Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bridging Separations in Matroids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00028918" target="_blank" >RIV/00216224:14330/05:00028918 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bridging Separations in Matroids

  • Popis výsledku v původním jazyce

    Let $(X_1,X_2)$ be an exact $k$--separation of a matroid $N$. If $M$ is a matroid that contains $N$ as a minor and the $k$--separation $(X_1,X_2)$ does not extend to a $k$--separation in $M$ then we say that $M$ {em bridges} the $k$--separation $(X_1,X_2)$ in $N$. One would hope that a minor minimal bridge for $(X_1,X_2)$ would not be much larger than $N$. Unfortunately there are instances in which one can construct arbitaraily large minor minimal bridges. We restrict our attention to the class of matroids representable over a fixed finite field and show that here minor minimal bridges are bounded in size.

  • Název v anglickém jazyce

    Bridging Separations in Matroids

  • Popis výsledku anglicky

    Let $(X_1,X_2)$ be an exact $k$--separation of a matroid $N$. If $M$ is a matroid that contains $N$ as a minor and the $k$--separation $(X_1,X_2)$ does not extend to a $k$--separation in $M$ then we say that $M$ {em bridges} the $k$--separation $(X_1,X_2)$ in $N$. One would hope that a minor minimal bridge for $(X_1,X_2)$ would not be much larger than $N$. Unfortunately there are instances in which one can construct arbitaraily large minor minimal bridges. We restrict our attention to the class of matroids representable over a fixed finite field and show that here minor minimal bridges are bounded in size.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F05%2F0050" target="_blank" >GA201/05/0050: Strukturální vlastnosti a algoritmická složitost diskrétních problémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000228918000018

  • EID výsledku v databázi Scopus