Improved statistical edge detection through neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00017002" target="_blank" >RIV/00216224:14330/06:00017002 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved statistical edge detection through neural networks
Popis výsledku v původním jazyce
The paper details a novel and successful method for multi-statistic edge detection. The detector works by analyzing the texture properties of different regions within an image, and through the use of neural networks classifying the location and directionof any edges. The detailed technique is illustrated for use both on Histological Mouse Embryo Atlas (MA) images, and also real image data. The overall accuracy of this novel technique is extensively tested using a novel grey-scale performance measure (GFOM) which allows a robustness in the results unavailable with visual inspection alone. The filter is illustrated to outperform the traditional Canny edge detector which is seen as the benchmark for edge detection. The technique presented within the paper can be applied to a variety of low level medical imaging applications and is particularly suited to images containing high levels of noise and texture where the traditional methods of edge detection prove less successful.
Název v anglickém jazyce
Improved statistical edge detection through neural networks
Popis výsledku anglicky
The paper details a novel and successful method for multi-statistic edge detection. The detector works by analyzing the texture properties of different regions within an image, and through the use of neural networks classifying the location and directionof any edges. The detailed technique is illustrated for use both on Histological Mouse Embryo Atlas (MA) images, and also real image data. The overall accuracy of this novel technique is extensively tested using a novel grey-scale performance measure (GFOM) which allows a robustness in the results unavailable with visual inspection alone. The filter is illustrated to outperform the traditional Canny edge detector which is seen as the benchmark for edge detection. The technique presented within the paper can be applied to a variety of low level medical imaging applications and is particularly suited to images containing high levels of noise and texture where the traditional methods of edge detection prove less successful.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
10th Conference on Medical Image Understanding and Analysis
ISBN
1-901727-31-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
BMVA
Místo vydání
Manchester
Místo konání akce
University of Manchester
Datum konání akce
1. 1. 2006
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—