Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved statistical edge detection through neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00017002" target="_blank" >RIV/00216224:14330/06:00017002 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved statistical edge detection through neural networks

  • Popis výsledku v původním jazyce

    The paper details a novel and successful method for multi-statistic edge detection. The detector works by analyzing the texture properties of different regions within an image, and through the use of neural networks classifying the location and directionof any edges. The detailed technique is illustrated for use both on Histological Mouse Embryo Atlas (MA) images, and also real image data. The overall accuracy of this novel technique is extensively tested using a novel grey-scale performance measure (GFOM) which allows a robustness in the results unavailable with visual inspection alone. The filter is illustrated to outperform the traditional Canny edge detector which is seen as the benchmark for edge detection. The technique presented within the paper can be applied to a variety of low level medical imaging applications and is particularly suited to images containing high levels of noise and texture where the traditional methods of edge detection prove less successful.

  • Název v anglickém jazyce

    Improved statistical edge detection through neural networks

  • Popis výsledku anglicky

    The paper details a novel and successful method for multi-statistic edge detection. The detector works by analyzing the texture properties of different regions within an image, and through the use of neural networks classifying the location and directionof any edges. The detailed technique is illustrated for use both on Histological Mouse Embryo Atlas (MA) images, and also real image data. The overall accuracy of this novel technique is extensively tested using a novel grey-scale performance measure (GFOM) which allows a robustness in the results unavailable with visual inspection alone. The filter is illustrated to outperform the traditional Canny edge detector which is seen as the benchmark for edge detection. The technique presented within the paper can be applied to a variety of low level medical imaging applications and is particularly suited to images containing high levels of noise and texture where the traditional methods of edge detection prove less successful.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    10th Conference on Medical Image Understanding and Analysis

  • ISBN

    1-901727-31-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    BMVA

  • Místo vydání

    Manchester

  • Místo konání akce

    University of Manchester

  • Datum konání akce

    1. 1. 2006

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku