Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F08%3A00042085" target="_blank" >RIV/00216224:14330/08:00042085 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks
Popis výsledku v původním jazyce
A novel edge detector has been developed that utilizes statistical masks and neural networks for the optimal detection of edges over a wide range of image types. The failure of many common edge detection techniques has been observed when analyzing concealed weapons X-ray images, biomedical images or images with significant levels of noise, clutter or texture. This novel technique is based on a statistical edge detection filter that uses a range of two-sample statistical tests to evaluate any local imagetexture differences. The range and type of tests has been greatly expanded from the previous works. This process is further enhanced by applying combined multiple scale pixel masks and multiple statistical tests, to Artificial Neural Networks (ANN) trained to classify different edge types. Through the use of Artificial Neural Networks (ANN) we can combine the output results of several statistical mask scales into one detector.
Název v anglickém jazyce
Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks
Popis výsledku anglicky
A novel edge detector has been developed that utilizes statistical masks and neural networks for the optimal detection of edges over a wide range of image types. The failure of many common edge detection techniques has been observed when analyzing concealed weapons X-ray images, biomedical images or images with significant levels of noise, clutter or texture. This novel technique is based on a statistical edge detection filter that uses a range of two-sample statistical tests to evaluate any local imagetexture differences. The range and type of tests has been greatly expanded from the previous works. This process is further enhanced by applying combined multiple scale pixel masks and multiple statistical tests, to Artificial Neural Networks (ANN) trained to classify different edge types. Through the use of Artificial Neural Networks (ANN) we can combine the output results of several statistical mask scales into one detector.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1K05021" target="_blank" >1K05021: Rekonstrukce objektů v biomedicínských obrazech pomocí statistických metod a metod umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE-IS&T Electronic Imaging
ISBN
—
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham, Washington
Místo konání akce
San Jose, CA, USA
Datum konání akce
1. 1. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000256350500050