O rozhodnutelnosti MSO teorií kombinatorických struktur: Obecné matroidy?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00024640" target="_blank" >RIV/00216224:14330/06:00024640 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On decidability of MSO theories of combinatorial structures: Towards general matroids?
Popis výsledku v původním jazyce
We study the problem of decidability of MSO theories on various (restricted) matroid classes. When considering the matroids representable over a finite field (which is in structural sense similar to graphs embedded on a surface), the situation resemblesordinary graphs as incidence structures. The monadic second-order theory of all matroids over a finite field of bounded branch-width is decidable [H]. Conversely, the decidability of monadic second-order theory of a class of matroids over a finite fieldimplies a bound on the branch-widths of the matroids in this class [HS]. The situation gets much more versatile and interesting when considering matroids in general (as "abstract", without a particular representation). We shall focus mainly on this part,and present some particular observations and results, and mainly open questions and directions for future research. This is related to another interesting question already raised by [HS] : What could be a "good" width measure for general
Název v anglickém jazyce
On decidability of MSO theories of combinatorial structures: Towards general matroids?
Popis výsledku anglicky
We study the problem of decidability of MSO theories on various (restricted) matroid classes. When considering the matroids representable over a finite field (which is in structural sense similar to graphs embedded on a surface), the situation resemblesordinary graphs as incidence structures. The monadic second-order theory of all matroids over a finite field of bounded branch-width is decidable [H]. Conversely, the decidability of monadic second-order theory of a class of matroids over a finite fieldimplies a bound on the branch-widths of the matroids in this class [HS]. The situation gets much more versatile and interesting when considering matroids in general (as "abstract", without a particular representation). We shall focus mainly on this part,and present some particular observations and results, and mainly open questions and directions for future research. This is related to another interesting question already raised by [HS] : What could be a "good" width measure for general
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F05%2F0050" target="_blank" >GA201/05/0050: Strukturální vlastnosti a algoritmická složitost diskrétních problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů