Podobnostní vyhledávání v obrázcích: Teorie a praxe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00019493" target="_blank" >RIV/00216224:14330/07:00019493 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Similarity Search: Theory and Practice
Popis výsledku v původním jazyce
The data-explosion phenomenon proceeds in two respects: (1) The volume of data produced is increasing rapidly and (2) new data types appear and are widely used. This calls for development of brand new indexing and searching methods which would respect the needs of the recent data types and be efficient on vast amounts of data. This paper describes a transfer of our previous theoretical results in this area into practice by building a fully functional application. The application is able to efficiently manage large collections of digital images and search these images according to their very content (the similarity search). Its distributed architecture is based on the peer-to-peer paradigm and the searching method adopts the metric-based approach to similarity. Currently the application can store and search tens of millions of images downloaded from the Web with dozens of simultaneous users, although it runs on a limited hardware infrastructure.
Název v anglickém jazyce
Image Similarity Search: Theory and Practice
Popis výsledku anglicky
The data-explosion phenomenon proceeds in two respects: (1) The volume of data produced is increasing rapidly and (2) new data types appear and are widely used. This calls for development of brand new indexing and searching methods which would respect the needs of the recent data types and be efficient on vast amounts of data. This paper describes a transfer of our previous theoretical results in this area into practice by building a fully functional application. The application is able to efficiently manage large collections of digital images and search these images according to their very content (the similarity search). Its distributed architecture is based on the peer-to-peer paradigm and the searching method adopts the metric-based approach to similarity. Currently the application can store and search tens of millions of images downloaded from the Web with dozens of simultaneous users, although it runs on a limited hardware infrastructure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MEMICS 2007: Third Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
ISBN
978-80-7355-077-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
154-160
Název nakladatele
Masaryk University and Technical University of Brno
Místo vydání
Brno, Czech Republic
Místo konání akce
Znojmo, Czechia
Datum konání akce
26. 10. 2007
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—