Building Self-Organized Image Retrieval Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F08%3A00024257" target="_blank" >RIV/00216224:14330/08:00024257 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building Self-Organized Image Retrieval Network
Popis výsledku v původním jazyce
We propose a self-organized content-based Image Retrieval Network (IRN) that is inspired by a Metric Social Network (MSN) search system. The proposed network model is strictly data-owner oriented so no data redistribution among peers is needed in order to efficiently process queries. Thus a shared database where each peer is fully in charge of its data, is created. The self-organization of the network is obtained by exploiting the social-network approach of the MSN -- the connections between peers in the network are created as social-network relationships formed on the basis of a query-answer principle. The knowledge of answers to previous queries is used to fast navigate to peers, possibly containing the best answers to new queries. Additionally, thenetwork uses a randomized mechanism to explore new and unvisited parts of the network. In this way, the self-adaptability and robustness of the system are achieved. The proposed concepts are verified using a real network consisting of 2,0
Název v anglickém jazyce
Building Self-Organized Image Retrieval Network
Popis výsledku anglicky
We propose a self-organized content-based Image Retrieval Network (IRN) that is inspired by a Metric Social Network (MSN) search system. The proposed network model is strictly data-owner oriented so no data redistribution among peers is needed in order to efficiently process queries. Thus a shared database where each peer is fully in charge of its data, is created. The self-organization of the network is obtained by exploiting the social-network approach of the MSN -- the connections between peers in the network are created as social-network relationships formed on the basis of a query-answer principle. The knowledge of answers to previous queries is used to fast navigate to peers, possibly containing the best answers to new queries. Additionally, thenetwork uses a randomized mechanism to explore new and unvisited parts of the network. In this way, the self-adaptability and robustness of the system are achieved. The proposed concepts are verified using a real network consisting of 2,0
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceeding of the 2008 ACM workshop on Large-Scale distributed systems for information retrieval (LSDS-IR'08)
ISBN
978-1-60558-254-2
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
ACM New York
Místo vydání
USA
Místo konání akce
Napa, CA, USA
Datum konání akce
1. 1. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—