Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scaling to Billion-plus Word Corpora

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00035368" target="_blank" >RIV/00216224:14330/09:00035368 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scaling to Billion-plus Word Corpora

  • Popis výsledku v původním jazyce

    Most phenomena in natural languages are distributed in accordance with Zipf's law, so many words, phrases and other items occur rarely and we need very large corpora to provide evidence about them. Previous work shows that it is possible to create very large (multi-billion word) corpora from the web. The usability of such corpora is often limited by duplicate contents and a lack of efficient query tools. This paper describes BiWeC, a Big Web Corpus of English texts currently comprising 5.5b words fullyprocessed, and with a target size of 20b. We present a method for detecting near-duplicate text documents in multi-billion-word text collections and describe how one corpus query tool, the Sketch Engine, has been re-engineered to efficiently encode, process and query such corpora on low-cost hardware.

  • Název v anglickém jazyce

    Scaling to Billion-plus Word Corpora

  • Popis výsledku anglicky

    Most phenomena in natural languages are distributed in accordance with Zipf's law, so many words, phrases and other items occur rarely and we need very large corpora to provide evidence about them. Previous work shows that it is possible to create very large (multi-billion word) corpora from the web. The usability of such corpora is often limited by duplicate contents and a lack of efficient query tools. This paper describes BiWeC, a Big Web Corpus of English texts currently comprising 5.5b words fullyprocessed, and with a target size of 20b. We present a method for detecting near-duplicate text documents in multi-billion-word text collections and describe how one corpus query tool, the Sketch Engine, has been re-engineered to efficiently encode, process and query such corpora on low-cost hardware.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Computational Linguistics

  • ISSN

    1870-4069

  • e-ISSN

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    zima 2009

  • Stát vydavatele periodika

    MX - Spojené státy mexické

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus