Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Building a 70 billion word corpus of English from ClueWeb

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00057572" target="_blank" >RIV/00216224:14330/12:00057572 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://nlp.fi.muni.cz/publications/lrec2012_xpomikal_pary_xjakub/lrec2012.pdf" target="_blank" >http://nlp.fi.muni.cz/publications/lrec2012_xpomikal_pary_xjakub/lrec2012.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Building a 70 billion word corpus of English from ClueWeb

  • Popis výsledku v původním jazyce

    This work describes the process of creation of a 70 billion word text corpus of English. We used an existing language resource, namely the ClueWeb09 dataset, as source for the corpus data. Processing such a vast amount of data presented several challenges, mainly associated with pre-processing (boilerplate cleaning, text de-duplication) and post-processing (indexing for efficient corpus querying using the CQL ? Corpus Query Language) steps. In this paper we explain how we tackled them: we describe the tools used for boilerplate cleaning (jusText) and for de-duplication (onion) that was performed not only on full (document-level) duplicates but also on the level of near-duplicate texts. Moreover we show the impact of each of the performed pre-processingsteps on the final corpus size.

  • Název v anglickém jazyce

    Building a 70 billion word corpus of English from ClueWeb

  • Popis výsledku anglicky

    This work describes the process of creation of a 70 billion word text corpus of English. We used an existing language resource, namely the ClueWeb09 dataset, as source for the corpus data. Processing such a vast amount of data presented several challenges, mainly associated with pre-processing (boilerplate cleaning, text de-duplication) and post-processing (indexing for efficient corpus querying using the CQL ? Corpus Query Language) steps. In this paper we explain how we tackled them: we describe the tools used for boilerplate cleaning (jusText) and for de-duplication (onion) that was performed not only on full (document-level) duplicates but also on the level of near-duplicate texts. Moreover we show the impact of each of the performed pre-processingsteps on the final corpus size.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)

  • ISBN

    9782951740877

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    502-506

  • Název nakladatele

    European Language Resources Association (ELRA)

  • Místo vydání

    Istanbul, Turkey

  • Místo konání akce

    Istanbul, Turkey

  • Datum konání akce

    1. 1. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku