Tracking Recurring Concepts with Meta-learners
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00037443" target="_blank" >RIV/00216224:14330/09:00037443 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/09:00067155
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tracking Recurring Concepts with Meta-learners
Popis výsledku v původním jazyce
This work address data stream mining from dynamic environments where the distribution underlying the observations may change over time. In these contexts, learning algorithms must be equipped with change detection mechanisms. Several methods have been proposed able to detect and react to concept drift. When a drift is signaled, most of the approaches use a forgetting mechanism, by releasing the current model, and start learning a new decision model. It is not rare for the concepts from history to reappear, for example seasonal changes. In this work we present method that memorizes learnt models and uses meta-learning techniques that characterize the domain of applicability of previous models. The meta-learner can detect re-occurrence of contexts and take pro-active actions by activating previous models. The main benefit of this approach is that proposed meta-learner is capable of selecting similar historical concept, if there is one, without the knowledge of true classes of examples.
Název v anglickém jazyce
Tracking Recurring Concepts with Meta-learners
Popis výsledku anglicky
This work address data stream mining from dynamic environments where the distribution underlying the observations may change over time. In these contexts, learning algorithms must be equipped with change detection mechanisms. Several methods have been proposed able to detect and react to concept drift. When a drift is signaled, most of the approaches use a forgetting mechanism, by releasing the current model, and start learning a new decision model. It is not rare for the concepts from history to reappear, for example seasonal changes. In this work we present method that memorizes learnt models and uses meta-learning techniques that characterize the domain of applicability of previous models. The meta-learner can detect re-occurrence of contexts and take pro-active actions by activating previous models. The main benefit of this approach is that proposed meta-learner is capable of selecting similar historical concept, if there is one, without the knowledge of true classes of examples.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Progress in Artificial Intelligence
ISBN
978-3-642-04685-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
Springer Berlin / Heidelberg
Místo vydání
Berlin
Místo konání akce
Aveiro
Datum konání akce
12. 10. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000273296300035