Very Fast Decision Rules for Multi-class Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00059330" target="_blank" >RIV/00216224:14330/12:00059330 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Very Fast Decision Rules for Multi-class Problems
Popis výsledku v původním jazyce
Decision rules are one of the most interpretable and flexible models for data mining prediction tasks. Till now, few works presented on-line, any-time and one-pass algorithms for learning decision rules in the stream mining scenario. A quite recent algorithm, the Very Fast Decision Rules (VFDR), learns set of rules, where each rule discriminates one class from all the other. In this work we extend the VFDR algorithm by decomposing a multi-class problem into a set of two-class problems and inducing a setof discriminative rules for each binary problem. The proposed algorithm maintains all properties required when learning from stationary data streams: on-line and any-time classifiers, processing each example once. Moreover, it is able to learn ordered and unordered rule sets. The new approach is evaluated on various real and artificial datasets. The new algorithm improves the performance of the previous version and is competitive with the state-of-the-art decision tree learning method f
Název v anglickém jazyce
Very Fast Decision Rules for Multi-class Problems
Popis výsledku anglicky
Decision rules are one of the most interpretable and flexible models for data mining prediction tasks. Till now, few works presented on-line, any-time and one-pass algorithms for learning decision rules in the stream mining scenario. A quite recent algorithm, the Very Fast Decision Rules (VFDR), learns set of rules, where each rule discriminates one class from all the other. In this work we extend the VFDR algorithm by decomposing a multi-class problem into a set of two-class problems and inducing a setof discriminative rules for each binary problem. The proposed algorithm maintains all properties required when learning from stationary data streams: on-line and any-time classifiers, processing each example once. Moreover, it is able to learn ordered and unordered rule sets. The new approach is evaluated on various real and artificial datasets. The new algorithm improves the performance of the previous version and is competitive with the state-of-the-art decision tree learning method f
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LA09016" target="_blank" >LA09016: Účast ČR v European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM 27th Symposium On Applied Computing
ISBN
9781450308571
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
795-800
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Riva del Garda, Italy
Datum konání akce
26. 3. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—