Very Fast Decision Rules for Classification in Data Streams
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00081934" target="_blank" >RIV/00216224:14330/15:00081934 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10618-013-0340-z" target="_blank" >http://dx.doi.org/10.1007/s10618-013-0340-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10618-013-0340-z" target="_blank" >10.1007/s10618-013-0340-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Very Fast Decision Rules for Classification in Data Streams
Popis výsledku v původním jazyce
Data stream mining is the process of extracting knowledge structures from continuous, rapid data records. Many decision tasks can be formulated as stream mining problems and therefore many new algorithms for data streams are being proposed. Decision rules are one of the most interpretable and flexible models for predictive data mining. Nevertheless, few algorithms have been proposed in the literature to learn rule models for time-changing and high-speed flows of data. In this paper we present the very fast decision rules (VFDR) algorithm and discuss interesting extensions to the base version. All the proposed versions are one-pass and any-time algorithms. They work on-line and learn ordered or unordered rule sets. Algorithms designed to work with datastreams should be able to detect changes and quickly adapt the decision model. In order to manage these situations we also present the adaptive extension (AVFDR) to detect changes in the process generating data and adapt the decision mode
Název v anglickém jazyce
Very Fast Decision Rules for Classification in Data Streams
Popis výsledku anglicky
Data stream mining is the process of extracting knowledge structures from continuous, rapid data records. Many decision tasks can be formulated as stream mining problems and therefore many new algorithms for data streams are being proposed. Decision rules are one of the most interpretable and flexible models for predictive data mining. Nevertheless, few algorithms have been proposed in the literature to learn rule models for time-changing and high-speed flows of data. In this paper we present the very fast decision rules (VFDR) algorithm and discuss interesting extensions to the base version. All the proposed versions are one-pass and any-time algorithms. They work on-line and learn ordered or unordered rule sets. Algorithms designed to work with datastreams should be able to detect changes and quickly adapt the decision model. In order to manage these situations we also present the adaptive extension (AVFDR) to detect changes in the process generating data and adapt the decision mode
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LA09016" target="_blank" >LA09016: Účast ČR v European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data Mining and Knowledge Discovery
ISSN
1384-5810
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
168-202
Kód UT WoS článku
000347948900006
EID výsledku v databázi Scopus
—