On Combining Sequence Alignment and Feature-quantization for Sub-image Searching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00073206" target="_blank" >RIV/00216224:14330/12:00073206 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/jmdem.2012070102" target="_blank" >http://dx.doi.org/10.4018/jmdem.2012070102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/jmdem.2012070102" target="_blank" >10.4018/jmdem.2012070102</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Combining Sequence Alignment and Feature-quantization for Sub-image Searching
Popis výsledku v původním jazyce
The availability of various photo archives and photo sharing systems made similarity searching much more important because the photos are not usually conveniently tagged. So the photos (images) need to be searched by their content. Moreover, it is important not only to compare images with a query holistically but also to locate images that contain the query as their part. The query can be a picture of a person, building, or an abstract object and the task is to retrieve images of the query object but from a different perspective or images capturing a global scene containing the query object. This retrieval is called the sub-image searching. In this paper, we propose an algorithm, called SASISA, for retrieving database images by their similarity to andcontainment of a query. The novelty of it lies in application of a sequence alignment algorithm, which is commonly used in text retrieval. This forms an orthogonal solution to currently used approaches based on inverted files.
Název v anglickém jazyce
On Combining Sequence Alignment and Feature-quantization for Sub-image Searching
Popis výsledku anglicky
The availability of various photo archives and photo sharing systems made similarity searching much more important because the photos are not usually conveniently tagged. So the photos (images) need to be searched by their content. Moreover, it is important not only to compare images with a query holistically but also to locate images that contain the query as their part. The query can be a picture of a person, building, or an abstract object and the task is to retrieve images of the query object but from a different perspective or images capturing a global scene containing the query object. This retrieval is called the sub-image searching. In this paper, we propose an algorithm, called SASISA, for retrieving database images by their similarity to andcontainment of a query. The novelty of it lies in application of a sequence alignment algorithm, which is commonly used in text retrieval. This forms an orthogonal solution to currently used approaches based on inverted files.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Multimedia Data Engineering and Management (IJMDEM)
ISSN
1947-8534
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
20-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—