Towards Artificial Priority Queues for Similarity Query Execution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00101035" target="_blank" >RIV/00216224:14330/18:00101035 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8402023/" target="_blank" >https://ieeexplore.ieee.org/document/8402023/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDEW.2018.00020" target="_blank" >10.1109/ICDEW.2018.00020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Artificial Priority Queues for Similarity Query Execution
Popis výsledku v původním jazyce
Content-based retrieval in large collections of unstructured data is challenging not only from the difficulty of the defining similarity between data images where the phenomenon of semantic gap appears, but also the efficiency of execution of similarity queries. Search engines providing similarity search typically organize various multimedia data, e.g. images of a photo stock, and support k-nearest neighbor query. Users accessing such systems then look for data items similar to their specific query object and refine results by re-running the search with an object from the previous query results. This paper is motivated by unsatisfactory query execution performance of indexing structures that use metric space as a convenient data model. We present performance behavior of two state-of-the-art representatives and propose a new universal technique for ordering priority queue of data partitions to be accessed during kNN query evaluation. We verify it in experiments on real-life data-sets.
Název v anglickém jazyce
Towards Artificial Priority Queues for Similarity Query Execution
Popis výsledku anglicky
Content-based retrieval in large collections of unstructured data is challenging not only from the difficulty of the defining similarity between data images where the phenomenon of semantic gap appears, but also the efficiency of execution of similarity queries. Search engines providing similarity search typically organize various multimedia data, e.g. images of a photo stock, and support k-nearest neighbor query. Users accessing such systems then look for data items similar to their specific query object and refine results by re-running the search with an object from the previous query results. This paper is motivated by unsatisfactory query execution performance of indexing structures that use metric space as a convenient data model. We present performance behavior of two state-of-the-art representatives and propose a new universal technique for ordering priority queue of data partitions to be accessed during kNN query evaluation. We verify it in experiments on real-life data-sets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-18889S" target="_blank" >GA16-18889S: Analytika pro velká nestrukturovaná data</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW)
ISBN
9781538663066
ISSN
2473-3490
e-ISSN
—
Počet stran výsledku
6
Strana od-do
78-83
Název nakladatele
IEEE
Místo vydání
Paris, France
Místo konání akce
Paris, France
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—