Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Popularity-Based Ranking for Fast Approximate kNN Search

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094704" target="_blank" >RIV/00216224:14330/17:00094704 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.15388/Informatica.2017.118" target="_blank" >http://dx.doi.org/10.15388/Informatica.2017.118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15388/Informatica.2017.118" target="_blank" >10.15388/Informatica.2017.118</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Popularity-Based Ranking for Fast Approximate kNN Search

  • Popis výsledku v původním jazyce

    Similarity searching has become widely available in many on-line archives of multimedia data. Users accessing such systems look for data items similar to their specific query object and typically refine results by re-running the search with a query from the results. We study this issue and propose a mechanism of approximate kNN query evaluation that incorporates statistics of accessing index data partitions. Apart from the distance between database objects, it also considers the prior query answers to prioritize index partitions containing frequently retrieved data, so evaluating repetitive similar queries more efficiently. We verify this concept in a number of experiments.

  • Název v anglickém jazyce

    Popularity-Based Ranking for Fast Approximate kNN Search

  • Popis výsledku anglicky

    Similarity searching has become widely available in many on-line archives of multimedia data. Users accessing such systems look for data items similar to their specific query object and typically refine results by re-running the search with a query from the results. We study this issue and propose a mechanism of approximate kNN query evaluation that incorporates statistics of accessing index data partitions. Apart from the distance between database objects, it also considers the prior query answers to prioritize index partitions containing frequently retrieved data, so evaluating repetitive similar queries more efficiently. We verify this concept in a number of experiments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-18889S" target="_blank" >GA16-18889S: Analytika pro velká nestrukturovaná data</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Informatica

  • ISSN

    0868-4952

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

    000398983000001

  • EID výsledku v databázi Scopus

    2-s2.0-85018758663