Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximating the termination value of one-counter MDPs and stochastic games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00065955" target="_blank" >RIV/00216224:14330/13:00065955 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ic.2012.01.008" target="_blank" >http://dx.doi.org/10.1016/j.ic.2012.01.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ic.2012.01.008" target="_blank" >10.1016/j.ic.2012.01.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximating the termination value of one-counter MDPs and stochastic games

  • Popis výsledku v původním jazyce

    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letterstack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value equal to 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in polynomial time (in NP intersection coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value at least p", or "approximate the termination value within epsilon") are far more challenging.

  • Název v anglickém jazyce

    Approximating the termination value of one-counter MDPs and stochastic games

  • Popis výsledku anglicky

    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letterstack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value equal to 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in polynomial time (in NP intersection coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value at least p", or "approximate the termination value within epsilon") are far more challenging.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information and Computation

  • ISSN

    0890-5401

  • e-ISSN

  • Svazek periodika

    222

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    121-138

  • Kód UT WoS článku

    000313861100010

  • EID výsledku v databázi Scopus