Determinacy and Optimal Strategies in Infinite-state Stochastic Reachability Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00080195" target="_blank" >RIV/00216224:14330/13:00080195 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S030439751200967X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S030439751200967X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2012.10.038" target="_blank" >10.1016/j.tcs.2012.10.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determinacy and Optimal Strategies in Infinite-state Stochastic Reachability Games
Popis výsledku v původním jazyce
We consider perfect-information reachability stochastic games for 2 players on countable graphs. Such a game is strongly determined if, whenever we fix an inequality ~E{>,>=} and a threshold p, either Player Max has a strategy which forces the value of the game to satisfy ~p against any strategy of Player Min, or Min has a strategy which forces the opposite against any strategy of Max. One of our results shows that whenever one of the players has an optimal strategy in every state of a game, thenthis game is strongly determined. This significantly generalises, e.g., recent results on finitely-branching reachability games. For strong determinacy, our methods are substantially different, based on which player has the optimal strategy, because theroles of the players are not symmetric. We also do not restrict the branching of the games, and where we provide an extension of results for finitely-branching games, we had to overcome significant complications and employ new methods as
Název v anglickém jazyce
Determinacy and Optimal Strategies in Infinite-state Stochastic Reachability Games
Popis výsledku anglicky
We consider perfect-information reachability stochastic games for 2 players on countable graphs. Such a game is strongly determined if, whenever we fix an inequality ~E{>,>=} and a threshold p, either Player Max has a strategy which forces the value of the game to satisfy ~p against any strategy of Player Min, or Min has a strategy which forces the opposite against any strategy of Max. One of our results shows that whenever one of the players has an optimal strategy in every state of a game, thenthis game is strongly determined. This significantly generalises, e.g., recent results on finitely-branching reachability games. For strong determinacy, our methods are substantially different, based on which player has the optimal strategy, because theroles of the players are not symmetric. We also do not restrict the branching of the games, and where we provide an extension of results for finitely-branching games, we had to overcome significant complications and employ new methods as
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
493
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
80-97
Kód UT WoS článku
000321410000007
EID výsledku v databázi Scopus
—