Approximation and hardness results for the maximum edges in transitive closure problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00087423" target="_blank" >RIV/00216224:14330/15:00087423 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-19315-1_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19315-1_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-19315-1_2" target="_blank" >10.1007/978-3-319-19315-1_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximation and hardness results for the maximum edges in transitive closure problem
Popis výsledku v původním jazyce
In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph G = (V,E) and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized. The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of |V |1/3-eps, for any constant eps > 0. Additionally, we show that the problem is APXhard already for the case when the numberof vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor [formula presented]
Název v anglickém jazyce
Approximation and hardness results for the maximum edges in transitive closure problem
Popis výsledku anglicky
In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph G = (V,E) and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized. The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of |V |1/3-eps, for any constant eps > 0. Additionally, we show that the problem is APXhard already for the case when the numberof vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor [formula presented]
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th International Workshop on Combinatorial Algorithms, IWOCA 2014, LNCS 8986
ISBN
9783319193144
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
13-23
Název nakladatele
Springer
Místo vydání
Duluth; United States
Místo konání akce
Duluth; United States
Datum konání akce
1. 1. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—