Tree-depth and Vertex-minors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088544" target="_blank" >RIV/00216224:14330/16:00088544 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejc.2016.03.001" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2016.03.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2016.03.001" target="_blank" >10.1016/j.ejc.2016.03.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tree-depth and Vertex-minors
Popis výsledku v původním jazyce
In a recent paper Kwon and Oum (2014), Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show how a suitable adaptation of known results implies that shrub-depth is monotone under taking vertex-minors, and we prove that every graph class of bounded shrub-depth can be obtained via vertex-minors of graphs of bounded tree-depth. While we exhibit an example that pivot-minors are generally not sufficient (unlike Kwon and Oum (2014)) in the latter statement, we then prove that the bipartite graphs in every class of bounded shrub-depth can be obtained as pivot-minors of graphs of bounded tree-depth.
Název v anglickém jazyce
Tree-depth and Vertex-minors
Popis výsledku anglicky
In a recent paper Kwon and Oum (2014), Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show how a suitable adaptation of known results implies that shrub-depth is monotone under taking vertex-minors, and we prove that every graph class of bounded shrub-depth can be obtained via vertex-minors of graphs of bounded tree-depth. While we exhibit an example that pivot-minors are generally not sufficient (unlike Kwon and Oum (2014)) in the latter statement, we then prove that the bipartite graphs in every class of bounded shrub-depth can be obtained as pivot-minors of graphs of bounded tree-depth.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-03501S" target="_blank" >GA14-03501S: Parametrizované algoritmy a kernelizace v kontextu diskrétní matematiky a logiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
46-56
Kód UT WoS článku
000376056600004
EID výsledku v databázi Scopus
—