Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Network Flows for Data Distribution and Computation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00094080" target="_blank" >RIV/00216224:14330/16:00094080 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/16:00475856

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/SSCI.2016.7850083" target="_blank" >http://dx.doi.org/10.1109/SSCI.2016.7850083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SSCI.2016.7850083" target="_blank" >10.1109/SSCI.2016.7850083</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Network Flows for Data Distribution and Computation

  • Popis výsledku v původním jazyce

    An important class of modern big data applications is distributed data production in High Energy and Nuclear Physics (HENP). Such data intensive computations heavily rely on geographically distributed resources featuring hundreds of thousands CPUs and petabytes of storage. Unfortunately, classical job scheduling approaches either do not address all the aspects of the case or do not scale appropriately. Previously we have developed a new job scheduling approach dedicated to distributed data production, where the load balancing across sites is provided by forwarding data in peer-to-peer manner, but guided by a centrally created and periodically updated plan, aiming to achieve global optimality. Because the many HENP experiments utilize distributed storage, in this work we provide an important generalization of our approach to consider multiple sources of input data.

  • Název v anglickém jazyce

    Network Flows for Data Distribution and Computation

  • Popis výsledku anglicky

    An important class of modern big data applications is distributed data production in High Energy and Nuclear Physics (HENP). Such data intensive computations heavily rely on geographically distributed resources featuring hundreds of thousands CPUs and petabytes of storage. Unfortunately, classical job scheduling approaches either do not address all the aspects of the case or do not scale appropriately. Previously we have developed a new job scheduling approach dedicated to distributed data production, where the load balancing across sites is provided by forwarding data in peer-to-peer manner, but guided by a centrally created and periodically updated plan, aiming to achieve global optimality. Because the many HENP experiments utilize distributed storage, in this work we provide an important generalization of our approach to consider multiple sources of input data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2016 IEEE Symposium Series on Computational Intelligence (SSCI)

  • ISBN

    9781509042401

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    IEEE

  • Místo vydání

    USA

  • Místo konání akce

    USA

  • Datum konání akce

    1. 1. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku