Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Provenance-aware optimization of workload for distributed data production

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00098484" target="_blank" >RIV/00216224:14330/17:00098484 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1742-6596/898/5/052038" target="_blank" >http://dx.doi.org/10.1088/1742-6596/898/5/052038</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/898/5/052038" target="_blank" >10.1088/1742-6596/898/5/052038</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Provenance-aware optimization of workload for distributed data production

  • Popis výsledku v původním jazyce

    Distributed data processing in High Energy and Nuclear Physics (HENP) is a prominent example of big data analysis. Having petabytes of data being processed at tens of computational sites with thousands of CPUs, standard job scheduling approaches either do not address well the problem complexity or are dedicated to one specific aspect of the problem only (CPU, network or storage). Previously we have developed a new job scheduling approach dedicated to distributed data production – an essential part of data processing in HENP (pre- processing in big data terminology). In this contribution, we discuss the load balancing with multiple data sources and data replication, present recent improvements made to our planner and provide results of simulations which demonstrate the advantage against standard scheduling policies for the new use case. Multi-source or provenance is common in computing models of many applications whereas the data may be copied to several destinations. The initial input data set would hence be already partially replicated to multiple locations and the task of the scheduler is to maximize overall computational throughput considering possible data movements and CPU allocation. The studies have shown that our approach can provide a significant gain in overall computational performance in a wide scope of simulations considering realistic size of computational Grid and various input data distribution.

  • Název v anglickém jazyce

    Provenance-aware optimization of workload for distributed data production

  • Popis výsledku anglicky

    Distributed data processing in High Energy and Nuclear Physics (HENP) is a prominent example of big data analysis. Having petabytes of data being processed at tens of computational sites with thousands of CPUs, standard job scheduling approaches either do not address well the problem complexity or are dedicated to one specific aspect of the problem only (CPU, network or storage). Previously we have developed a new job scheduling approach dedicated to distributed data production – an essential part of data processing in HENP (pre- processing in big data terminology). In this contribution, we discuss the load balancing with multiple data sources and data replication, present recent improvements made to our planner and provide results of simulations which demonstrate the advantage against standard scheduling policies for the new use case. Multi-source or provenance is common in computing models of many applications whereas the data may be copied to several destinations. The initial input data set would hence be already partially replicated to multiple locations and the task of the scheduler is to maximize overall computational throughput considering possible data movements and CPU allocation. The studies have shown that our approach can provide a significant gain in overall computational performance in a wide scope of simulations considering realistic size of computational Grid and various input data distribution.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Journal of Physics: Conference Series, vol. 898

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    052038

  • Název nakladatele

    Institute of Physics Publishing

  • Místo vydání

    United Kingdom

  • Místo konání akce

    United Kingdom

  • Datum konání akce

    1. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku