Model Checking Existential Logic on Partially Ordered Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00100545" target="_blank" >RIV/00216224:14330/16:00100545 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=2603110" target="_blank" >https://dl.acm.org/citation.cfm?id=2603110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2814937" target="_blank" >10.1145/2814937</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model Checking Existential Logic on Partially Ordered Sets
Popis výsledku v původním jazyce
We study the problem of checking whether an existential sentence (that is, a first-order sentence in prefix form built using existential quantifiers and all Boolean connectives) is true in a finite partially ordered set (in short, a poset). A poset is a reflexive, antisymmetric, and transitive digraph. The problem encompasses the fundamental embedding problem of finding an isomorphic copy of a poset as an induced substructure of another poset. Model checking existential logic is already NP-hard on a fixed poset; thus we investigate structural properties of posets yielding conditions for fixed-parameter tractability when the problem is parameterized by the sentence. We identify width as a central structural property (the width of a poset is the maximum size of a subset of pairwise incomparable elements); our main algorithmic result is that model checking existential logic on classes of finite posets of bounded width is fixed-parameter tractable. We observe a similar phenomenon in classical complexity, where we prove that the isomorphism problem is polynomial-time tractable on classes of posets of bounded width; this settles an open problem in order theory. We surround our main algorithmic result with complexity results on less restricted, natural neighboring classes of finite posets, establishing its tightness in this sense. We also relate our work with (and demonstrate its independence of) fundamental fixed-parameter tractability results for model checking on digraphs of bounded degree and bounded clique-width.
Název v anglickém jazyce
Model Checking Existential Logic on Partially Ordered Sets
Popis výsledku anglicky
We study the problem of checking whether an existential sentence (that is, a first-order sentence in prefix form built using existential quantifiers and all Boolean connectives) is true in a finite partially ordered set (in short, a poset). A poset is a reflexive, antisymmetric, and transitive digraph. The problem encompasses the fundamental embedding problem of finding an isomorphic copy of a poset as an induced substructure of another poset. Model checking existential logic is already NP-hard on a fixed poset; thus we investigate structural properties of posets yielding conditions for fixed-parameter tractability when the problem is parameterized by the sentence. We identify width as a central structural property (the width of a poset is the maximum size of a subset of pairwise incomparable elements); our main algorithmic result is that model checking existential logic on classes of finite posets of bounded width is fixed-parameter tractable. We observe a similar phenomenon in classical complexity, where we prove that the isomorphism problem is polynomial-time tractable on classes of posets of bounded width; this settles an open problem in order theory. We surround our main algorithmic result with complexity results on less restricted, natural neighboring classes of finite posets, establishing its tightness in this sense. We also relate our work with (and demonstrate its independence of) fundamental fixed-parameter tractability results for model checking on digraphs of bounded degree and bounded clique-width.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Trans. Comput. Log.
ISSN
1529-3785
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
1-35
Kód UT WoS článku
000373902700003
EID výsledku v databázi Scopus
2-s2.0-84948988989