A tighter insertion-based approximation of the crossing number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094634" target="_blank" >RIV/00216224:14330/17:00094634 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >http://dx.doi.org/10.1007/s10878-016-0030-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >10.1007/s10878-016-0030-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A tighter insertion-based approximation of the crossing number
Popis výsledku v původním jazyce
Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. Finding an exact solution to MEI is NP-hard for general F. We present the first polynomial time algorithm for MEI that achieves an additive approximation guarantee—depending only on the size of F and the maximum degree of G, in the case of connected G. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the F-almost-planar graph G+F, while computing the crossing number of G+F exactly is NP-hard already when |F|=1. Hence our algorithm induces new, improved approximation bounds for the crossing number problem of F-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of F.
Název v anglickém jazyce
A tighter insertion-based approximation of the crossing number
Popis výsledku anglicky
Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. Finding an exact solution to MEI is NP-hard for general F. We present the first polynomial time algorithm for MEI that achieves an additive approximation guarantee—depending only on the size of F and the maximum degree of G, in the case of connected G. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the F-almost-planar graph G+F, while computing the crossing number of G+F exactly is NP-hard already when |F|=1. Hence our algorithm induces new, improved approximation bounds for the crossing number problem of F-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of F.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-03501S" target="_blank" >GA14-03501S: Parametrizované algoritmy a kernelizace v kontextu diskrétní matematiky a logiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Optimization
ISSN
1382-6905
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
43
Strana od-do
1183-1225
Kód UT WoS článku
000398945100003
EID výsledku v databázi Scopus
2-s2.0-85028255701