Sketches with Unbalanced Bits for Similarity Search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095051" target="_blank" >RIV/00216224:14330/17:00095051 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-68474-1_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68474-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68474-1_4" target="_blank" >10.1007/978-3-319-68474-1_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sketches with Unbalanced Bits for Similarity Search
Popis výsledku v původním jazyce
In order to accelerate efficiency of similarity search, compact bit-strings compared by the Hamming distance, so called sketches, have been proposed as a form of dimensionality reduction. To maximize the data compression and, at the same time, minimize the loss of information, sketches typically have the following two properties: (1) each bit divides datasets approximately in halves, i.e. bits are balanced, and (2) individual bits have low pairwise correlations, preferably zero. It has been shown that sketches with such properties are minimal with respect to the retained information. However, they are very difficult to index due to the dimensionality curse -- the range of distances is rather narrow and the distance to the nearest neighbour is high. We suggest to use sketches with unbalanced bits and we analyse their properties both analytically and experimentally. We show that such sketches can achieve practically the same quality of similarity search and they are much easier to index thanks to the decrease of distances to the nearest neighbours.
Název v anglickém jazyce
Sketches with Unbalanced Bits for Similarity Search
Popis výsledku anglicky
In order to accelerate efficiency of similarity search, compact bit-strings compared by the Hamming distance, so called sketches, have been proposed as a form of dimensionality reduction. To maximize the data compression and, at the same time, minimize the loss of information, sketches typically have the following two properties: (1) each bit divides datasets approximately in halves, i.e. bits are balanced, and (2) individual bits have low pairwise correlations, preferably zero. It has been shown that sketches with such properties are minimal with respect to the retained information. However, they are very difficult to index due to the dimensionality curse -- the range of distances is rather narrow and the distance to the nearest neighbour is high. We suggest to use sketches with unbalanced bits and we analyse their properties both analytically and experimentally. We show that such sketches can achieve practically the same quality of similarity search and they are much easier to index thanks to the decrease of distances to the nearest neighbours.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Similarity Search and Applications: 10th International Conference, SISAP 2017, Munich, Germany, October 4-6, 2017, Proceedings
ISBN
9783319684741
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
53-63
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Mnichov, Německo
Datum konání akce
4. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—