Fast reconstruction of image deformation field using radial basis function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00097217" target="_blank" >RIV/00216224:14330/17:00097217 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7950719/" target="_blank" >http://ieeexplore.ieee.org/document/7950719/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISBI.2017.7950719" target="_blank" >10.1109/ISBI.2017.7950719</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast reconstruction of image deformation field using radial basis function
Popis výsledku v původním jazyce
Fast and accurate registration of image data is a key component of computer-aided medical image analysis. Instead of performing the registration directly on the input images, many algorithms compute the transformation using a sparse representation extracted from the original data. However, in order to apply the resulting transformation onto the original images, a dense deformation field has to be reconstructed using a suitable inter-/extra-polation technique. In this paper, we employ the radial basis function (RBF) to reconstruct the dense deformation field from a sparse transformation computed by a model-based registration. Various kernels are tested using different scenario. The dense deformation field is used to warp the source image and compare it quantitatively to the target image using two different metrics. Moreover, the influence of the number and distribution of the control points required by the RBF is studied via two different scenarios. Beside the accuracy, the performance of the method accelerated using a GPU is reported.
Název v anglickém jazyce
Fast reconstruction of image deformation field using radial basis function
Popis výsledku anglicky
Fast and accurate registration of image data is a key component of computer-aided medical image analysis. Instead of performing the registration directly on the input images, many algorithms compute the transformation using a sparse representation extracted from the original data. However, in order to apply the resulting transformation onto the original images, a dense deformation field has to be reconstructed using a suitable inter-/extra-polation technique. In this paper, we employ the radial basis function (RBF) to reconstruct the dense deformation field from a sparse transformation computed by a model-based registration. Various kernels are tested using different scenario. The dense deformation field is used to warp the source image and compare it quantitatively to the target image using two different metrics. Moreover, the influence of the number and distribution of the control points required by the RBF is studied via two different scenarios. Beside the accuracy, the performance of the method accelerated using a GPU is reported.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI)
ISBN
9781509011711
ISSN
1945-7928
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1146-1150
Název nakladatele
IEEE
Místo vydání
Neuveden
Místo konání akce
Melbourne, VIC, Australia
Datum konání akce
18. 4. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000414283200265