Image-driven Stochastic Identification of Boundary Conditions for Predictive Simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00097947" target="_blank" >RIV/00216224:14330/17:00097947 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-66185-8_62" target="_blank" >https://doi.org/10.1007/978-3-319-66185-8_62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-66185-8_62" target="_blank" >10.1007/978-3-319-66185-8_62</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image-driven Stochastic Identification of Boundary Conditions for Predictive Simulation
Popis výsledku v původním jazyce
In computer-aided interventions, biomechanical models reconstructed from the pre-operative data are used via augmented reality to facilitate the intra-operative navigation. The predictive power of such models highly depends on the knowledge of boundary conditions. However, in the context of patient-specific modeling, neither the pre-operative nor the intra-operative modalities provide a reliable information about the location and mechanical properties of the organ attachments. We present a novel image-driven method for fast identification of boundary conditions which are modelled as stochastic parameters. The method employs the reduced-order unscented Kalman filter to transform in real-time the probability distributions of the parameters, given observations extracted from intra-operative images. The method is evaluated using synthetic, phantom and real data acquired in vivo on a porcine liver. A quantitative assessment is presented and it is shown that the method significantly increases the predictive power of the biomechanical model.
Název v anglickém jazyce
Image-driven Stochastic Identification of Boundary Conditions for Predictive Simulation
Popis výsledku anglicky
In computer-aided interventions, biomechanical models reconstructed from the pre-operative data are used via augmented reality to facilitate the intra-operative navigation. The predictive power of such models highly depends on the knowledge of boundary conditions. However, in the context of patient-specific modeling, neither the pre-operative nor the intra-operative modalities provide a reliable information about the location and mechanical properties of the organ attachments. We present a novel image-driven method for fast identification of boundary conditions which are modelled as stochastic parameters. The method employs the reduced-order unscented Kalman filter to transform in real-time the probability distributions of the parameters, given observations extracted from intra-operative images. The method is evaluated using synthetic, phantom and real data acquired in vivo on a porcine liver. A quantitative assessment is presented and it is shown that the method significantly increases the predictive power of the biomechanical model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II
ISBN
9783319661841
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
548-556
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Quebec
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—