Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100546" target="_blank" >RIV/00216224:14330/17:00100546 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.acm.org/citation.cfm?id=3014587" target="_blank" >https://dl.acm.org/citation.cfm?id=3014587</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3014587" target="_blank" >10.1145/3014587</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting

  • Popis výsledku v původním jazyce

    The Constraint Satisfaction Problem (CSP) is a central and generic computational problem which provides a common framework for many theoretical and practical applications. A central line of research is concerned with the identification of classes of instances for which CSP can be solved in polynomial time; such classes are often called “islands of tractability.” A prominent way of defining islands of tractability for CSP is to restrict the relations that may occur in the constraints to a fixed set, called a constraint language, whereas a constraint language is conservative if it contains all unary relations. Schaefer’s famous Dichotomy Theorem (STOC 1978) identifies all islands of tractability in terms of tractable constraint languages over a Boolean domain of values. Since then, many extensions and generalizations of this result have been obtained. Recently, Bulatov (TOCL 2011, JACM 2013) gave a full characterization of all islands of tractability for CSP and the counting version #CSP that are defined in terms of conservative constraint languages. This article addresses the general limit of the mentioned tractability results for CSP and #CSP, that they only apply to instances where all constraints belong to a single tractable language (in general, the union of two tractable languages is not tractable). We show that we can overcome this limitation as long as we keep some control of how constraints over the various considered tractable languages interact with each other. For this purpose, we utilize the notion of a strong backdoor of a CSP instance, as introduced by Williams et al. (IJCAI 2003), which is a set of variables that when instantiated, moves the instance to an island of tractability, that is, to a tractable class of instances. We consider strong backdoors into scattered classes, consisting of CSP instances where each connected component belongs entirely to some class from a list of tractable classes. Figuratively speaking, a scattered class constitutes an archipelago of tractability. The main difficulty lies in finding a strong backdoor of given size k; once it is found, we can try all possible instantiations of the backdoor variables and apply the polynomial time algorithms associated with the islands of tractability on the list component-wise. Our main result is an algorithm that, given a CSP instance with n variables, finds in time f(k)nO(1) a strong backdoor into a scattered class (associated with a list of finite conservative constraint languages) of size k or correctly decides that there is not such a backdoor. This also gives the running time for solving (#)CSP, provided that (#)CSP is polynomial-time tractable for the considered constraint languages. Our result makes significant progress towards the main goal of the backdoor-based approach to CSPs—the identification of maximal base classes for which small backdoors can be detected efficiently.

  • Název v anglickém jazyce

    Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting

  • Popis výsledku anglicky

    The Constraint Satisfaction Problem (CSP) is a central and generic computational problem which provides a common framework for many theoretical and practical applications. A central line of research is concerned with the identification of classes of instances for which CSP can be solved in polynomial time; such classes are often called “islands of tractability.” A prominent way of defining islands of tractability for CSP is to restrict the relations that may occur in the constraints to a fixed set, called a constraint language, whereas a constraint language is conservative if it contains all unary relations. Schaefer’s famous Dichotomy Theorem (STOC 1978) identifies all islands of tractability in terms of tractable constraint languages over a Boolean domain of values. Since then, many extensions and generalizations of this result have been obtained. Recently, Bulatov (TOCL 2011, JACM 2013) gave a full characterization of all islands of tractability for CSP and the counting version #CSP that are defined in terms of conservative constraint languages. This article addresses the general limit of the mentioned tractability results for CSP and #CSP, that they only apply to instances where all constraints belong to a single tractable language (in general, the union of two tractable languages is not tractable). We show that we can overcome this limitation as long as we keep some control of how constraints over the various considered tractable languages interact with each other. For this purpose, we utilize the notion of a strong backdoor of a CSP instance, as introduced by Williams et al. (IJCAI 2003), which is a set of variables that when instantiated, moves the instance to an island of tractability, that is, to a tractable class of instances. We consider strong backdoors into scattered classes, consisting of CSP instances where each connected component belongs entirely to some class from a list of tractable classes. Figuratively speaking, a scattered class constitutes an archipelago of tractability. The main difficulty lies in finding a strong backdoor of given size k; once it is found, we can try all possible instantiations of the backdoor variables and apply the polynomial time algorithms associated with the islands of tractability on the list component-wise. Our main result is an algorithm that, given a CSP instance with n variables, finds in time f(k)nO(1) a strong backdoor into a scattered class (associated with a list of finite conservative constraint languages) of size k or correctly decides that there is not such a backdoor. This also gives the running time for solving (#)CSP, provided that (#)CSP is polynomial-time tractable for the considered constraint languages. Our result makes significant progress towards the main goal of the backdoor-based approach to CSPs—the identification of maximal base classes for which small backdoors can be detected efficiently.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Algorithms

  • ISSN

    1549-6325

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    1-32

  • Kód UT WoS článku

    000405211200012

  • EID výsledku v databázi Scopus

    2-s2.0-85017135911