Parametric multi-step scheme for GPU-accelerated graph decomposition into strongly connected components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100646" target="_blank" >RIV/00216224:14330/17:00100646 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/16:PU126379
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-58943-5_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-58943-5_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-58943-5_42" target="_blank" >10.1007/978-3-319-58943-5_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric multi-step scheme for GPU-accelerated graph decomposition into strongly connected components
Popis výsledku v původním jazyce
The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition.
Název v anglickém jazyce
Parametric multi-step scheme for GPU-accelerated graph decomposition into strongly connected components
Popis výsledku anglicky
The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
22nd International Conference on Parallel and Distributed Computing, Euro-Par 2016
ISBN
9783319589428
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
519-531
Název nakladatele
Springer Verlag
Místo vydání
Cham
Místo konání akce
Grenoble; France
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000529303100042