ConceptRank for search-based image annotation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100721" target="_blank" >RIV/00216224:14330/18:00100721 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11042-017-4777-8" target="_blank" >http://dx.doi.org/10.1007/s11042-017-4777-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-017-4777-8" target="_blank" >10.1007/s11042-017-4777-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ConceptRank for search-based image annotation
Popis výsledku v původním jazyce
Multimedia information is becoming an ubiquitous part of our lives, which brings an equally ubiquitous need for efficient multimedia retrieval. One of the possible solutions to this problem is to attach text descriptions to multimedia data objects, thus allowing users to utilize traditional text search mechanisms. Search-based annotation techniques attempt to determine the descriptive keywords by analyzing the descriptions of similar, already annotated multimedia objects, which are detected by content-based retrieval techniques. One of the main challenges of this approach is the extraction of semantically connected keywords from the possibly noisy descriptions of similar objects. In this paper, we address this challenge by proposing the ConceptRank, a new keyword ranking algorithm that exploits semantic relationships between candidate keywords and utilizes the random walk mechanism to compute the probability of individual candidates. The effectiveness of the ConceptRank algorithm is evaluated in context of web image annotation. We present a complex image annotation system that includes the ConceptRank component, and compare it to other state-of-the–art annotation techniques.
Název v anglickém jazyce
ConceptRank for search-based image annotation
Popis výsledku anglicky
Multimedia information is becoming an ubiquitous part of our lives, which brings an equally ubiquitous need for efficient multimedia retrieval. One of the possible solutions to this problem is to attach text descriptions to multimedia data objects, thus allowing users to utilize traditional text search mechanisms. Search-based annotation techniques attempt to determine the descriptive keywords by analyzing the descriptions of similar, already annotated multimedia objects, which are detected by content-based retrieval techniques. One of the main challenges of this approach is the extraction of semantically connected keywords from the possibly noisy descriptions of similar objects. In this paper, we address this challenge by proposing the ConceptRank, a new keyword ranking algorithm that exploits semantic relationships between candidate keywords and utilizes the random walk mechanism to compute the probability of individual candidates. The effectiveness of the ConceptRank algorithm is evaluated in context of web image annotation. We present a complex image annotation system that includes the ConceptRank component, and compare it to other state-of-the–art annotation techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
8847-8882
Kód UT WoS článku
000429355800048
EID výsledku v databázi Scopus
—