Implementation Notes for the Soft Cosine Measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00101853" target="_blank" >RIV/00216224:14330/18:00101853 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1808.09407" target="_blank" >https://arxiv.org/abs/1808.09407</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3269206.3269317" target="_blank" >10.1145/3269206.3269317</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation Notes for the Soft Cosine Measure
Popis výsledku v původním jazyce
The standard bag-of-words vector space model (VSM) is efficient, and ubiquitous in information retrieval, but it underestimates the similarity of documents with the same meaning, but different terminology. To overcome this limitation, Sidorov et al. proposed the Soft Cosine Measure (SCM) that incorporates term similarity relations. Charlet and Damnati showed that the SCM is highly effective in question answering (QA) systems. However, the orthonormalization algorithm proposed by Sidorov et al. has an impractical time complexity of O(n^4), where n is the size of the vocabulary. In this paper, we prove a tighter lower worst-case time complexity bound of O(n^3). We also present an algorithm for computing the similarity between documents and we show that its worst-case time complexity is O(1) given realistic conditions. Lastly, we describe implementation in general-purpose vector databases such as Annoy, and Faiss and in the inverted indices of text search engines such as Apache Lucene, and ElasticSearch. Our results enable the deployment of the SCM in real-world information retrieval systems.
Název v anglickém jazyce
Implementation Notes for the Soft Cosine Measure
Popis výsledku anglicky
The standard bag-of-words vector space model (VSM) is efficient, and ubiquitous in information retrieval, but it underestimates the similarity of documents with the same meaning, but different terminology. To overcome this limitation, Sidorov et al. proposed the Soft Cosine Measure (SCM) that incorporates term similarity relations. Charlet and Damnati showed that the SCM is highly effective in question answering (QA) systems. However, the orthonormalization algorithm proposed by Sidorov et al. has an impractical time complexity of O(n^4), where n is the size of the vocabulary. In this paper, we prove a tighter lower worst-case time complexity bound of O(n^3). We also present an algorithm for computing the similarity between documents and we show that its worst-case time complexity is O(1) given realistic conditions. Lastly, we describe implementation in general-purpose vector databases such as Annoy, and Faiss and in the inverted indices of text search engines such as Apache Lucene, and ElasticSearch. Our results enable the deployment of the SCM in real-world information retrieval systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TD03000295" target="_blank" >TD03000295: Inteligentní software pro sémantické hledání dokumentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM '18)
ISBN
9781450360142
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1639-1642
Název nakladatele
Association for Computing Machinery
Místo vydání
Torino, Italy
Místo konání akce
Torino, Italy
Datum konání akce
22. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000455712300190