Parameterized Max Min Feedback Vertex Set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370181" target="_blank" >RIV/68407700:21240/23:00370181 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2023.62" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2023.62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2023.62" target="_blank" >10.4230/LIPIcs.MFCS.2023.62</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Max Min Feedback Vertex Set
Popis výsledku v původním jazyce
Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices of size at least k whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters. Using standard DP techniques, we first present an algorithm of time tw^O(tw) n^O(1), significantly generalizing a recent algorithm of Gaikwad et al. of time vc^O(vc) n^O(1), where tw, vc denote the input graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a vc^o(vc) n^O(1) algorithm would refute the ETH. With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity 10^k n^O(1). We point out that this algorithm is incorrect and present a branching algorithm of complexity 9.34^k n^O(1).
Název v anglickém jazyce
Parameterized Max Min Feedback Vertex Set
Popis výsledku anglicky
Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices of size at least k whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters. Using standard DP techniques, we first present an algorithm of time tw^O(tw) n^O(1), significantly generalizing a recent algorithm of Gaikwad et al. of time vc^O(vc) n^O(1), where tw, vc denote the input graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a vc^o(vc) n^O(1) algorithm would refute the ETH. With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity 10^k n^O(1). We point out that this algorithm is incorrect and present a branching algorithm of complexity 9.34^k n^O(1).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science
ISBN
978-3-95977-292-1
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
15
Strana od-do
"62:1"-"62:15"
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Bordeaux
Datum konání akce
28. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—