Parameterized Complexity of Minimum Membership Dominating Set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00374506" target="_blank" >RIV/68407700:21240/23:00374506 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00453-023-01139-7" target="_blank" >https://doi.org/10.1007/s00453-023-01139-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-023-01139-7" target="_blank" >10.1007/s00453-023-01139-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Complexity of Minimum Membership Dominating Set
Popis výsledku v původním jazyce
Given a graph G = (V, E) and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S subset of V of G such that for each v is an element of V, vertical bar N[v] boolean AND S vertical bar is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2(O(vc))vertical bar V vertical bar(O(1)) time algorithm for the MMDS problem where vc is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
Název v anglickém jazyce
Parameterized Complexity of Minimum Membership Dominating Set
Popis výsledku anglicky
Given a graph G = (V, E) and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S subset of V of G such that for each v is an element of V, vertical bar N[v] boolean AND S vertical bar is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2(O(vc))vertical bar V vertical bar(O(1)) time algorithm for the MMDS problem where vc is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
1432-0541
Svazek periodika
85
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
3430-3452
Kód UT WoS článku
001010001200001
EID výsledku v databázi Scopus
2-s2.0-85163100740