Bandwidth Parameterized by Cluster Vertex Deletion Number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370210" target="_blank" >RIV/68407700:21240/23:00370210 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.IPEC.2023.21" target="_blank" >https://doi.org/10.4230/LIPIcs.IPEC.2023.21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2023.21" target="_blank" >10.4230/LIPIcs.IPEC.2023.21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bandwidth Parameterized by Cluster Vertex Deletion Number
Popis výsledku v původním jazyce
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π from V(G) to {1, ..., |V(G)|} such that max_{{u, v} element E(G)} | π(u) - π(v) | <= b. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number of the input graph. In this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number ω of the input graph, thus generalizing the previously mentioned result for vertex cover. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results generalize some of the previous results and narrow some of the complexity gaps.
Název v anglickém jazyce
Bandwidth Parameterized by Cluster Vertex Deletion Number
Popis výsledku anglicky
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π from V(G) to {1, ..., |V(G)|} such that max_{{u, v} element E(G)} | π(u) - π(v) | <= b. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number of the input graph. In this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number ω of the input graph, thus generalizing the previously mentioned result for vertex cover. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results generalize some of the previous results and narrow some of the complexity gaps.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th International Symposium on Parameterized and Exact Computation
ISBN
978-3-95977-305-8
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
15
Strana od-do
"21:1"-"21:15"
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Amsterdam
Datum konání akce
6. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—