A Parameterized Complexity View on Collapsing k-Cores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00354097" target="_blank" >RIV/68407700:21240/21:00354097 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00224-021-10045-w" target="_blank" >https://doi.org/10.1007/s00224-021-10045-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-021-10045-w" target="_blank" >10.1007/s00224-021-10045-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Parameterized Complexity View on Collapsing k-Cores
Popis výsledku v původním jazyce
We study the NP-hard graph problem Collapsed k-Core where, given an undirected graph G and integers b, x, and k, we are asked to remove b vertices such that the k-core of remaining graph, that is, the (uniquely determined) largest induced subgraph with minimum degree k, has size at most x. Collapsed k-Core was introduced by Zhang et al. (2017) and it is motivated by the study of engagement behavior of users in a social network and measuring the resilience of a network against user drop outs. Collapsed k-Core is a generalization of r-Degenerate Vertex Deletion (which is known to be NP-hard for all r >= 0) where, given an undirected graph G and integers b and r, we are asked to remove b vertices such that the remaining graph is r-degenerate, that is, every its subgraph has minimum degree at most r. We investigate the parameterized complexity of Collapsed k-Core with respect to the parameters b, x, and k, and several structural parameters of the input graph. We reveal a dichotomy in the computational complexity of Collapsed k-Core for k <= 2 and k >= 3. For the latter case it is known that for all x >= 0 Collapsed k-Core is W[P]-hard when parameterized by b. For k <= 2 we show that Collapsed k-Core is W[1]-hard when parameterized by b and in FPT when parameterized by (b + x). Furthermore, we outline that Collapsed k-Core is in FPT when parameterized by the treewidth of the input graph and presumably does not admit a polynomial kernel when parameterized by the vertex cover number of the input graph.
Název v anglickém jazyce
A Parameterized Complexity View on Collapsing k-Cores
Popis výsledku anglicky
We study the NP-hard graph problem Collapsed k-Core where, given an undirected graph G and integers b, x, and k, we are asked to remove b vertices such that the k-core of remaining graph, that is, the (uniquely determined) largest induced subgraph with minimum degree k, has size at most x. Collapsed k-Core was introduced by Zhang et al. (2017) and it is motivated by the study of engagement behavior of users in a social network and measuring the resilience of a network against user drop outs. Collapsed k-Core is a generalization of r-Degenerate Vertex Deletion (which is known to be NP-hard for all r >= 0) where, given an undirected graph G and integers b and r, we are asked to remove b vertices such that the remaining graph is r-degenerate, that is, every its subgraph has minimum degree at most r. We investigate the parameterized complexity of Collapsed k-Core with respect to the parameters b, x, and k, and several structural parameters of the input graph. We reveal a dichotomy in the computational complexity of Collapsed k-Core for k <= 2 and k >= 3. For the latter case it is known that for all x >= 0 Collapsed k-Core is W[P]-hard when parameterized by b. For k <= 2 we show that Collapsed k-Core is W[1]-hard when parameterized by b and in FPT when parameterized by (b + x). Furthermore, we outline that Collapsed k-Core is in FPT when parameterized by the treewidth of the input graph and presumably does not admit a polynomial kernel when parameterized by the vertex cover number of the input graph.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20065S" target="_blank" >GA17-20065S: Těsné parametrizované výsledky pro problémy orientované souvislosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
1433-0490
Svazek periodika
65
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
40
Strana od-do
1243-1282
Kód UT WoS článku
000663468900002
EID výsledku v databázi Scopus
2-s2.0-85108313727