Impact of Dehazing on Underwater Marker Detection for Augmented Reality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00103492" target="_blank" >RIV/00216224:14330/18:00103492 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3389/frobt.2018.00092" target="_blank" >http://dx.doi.org/10.3389/frobt.2018.00092</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/frobt.2018.00092" target="_blank" >10.3389/frobt.2018.00092</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Dehazing on Underwater Marker Detection for Augmented Reality
Popis výsledku v původním jazyce
Underwater augmented reality is a very challenging task and amongst several issues, one of the most crucial aspects involves real-time tracking. Particles present in water combined with the uneven absorption of light decrease the visibility in the underwater environment. Dehazing methods are used in many areas to improve the quality of digital image data that is degraded by the influence of the environment. This paper describes the visibility conditions affecting underwater scenes and shows existing dehazing techniques that successfully improve the quality of underwater images. Four underwater dehazing methods are selected for evaluation of their capability of improving the success of square marker detection in underwater videos. Two reviewed methods represent approaches of image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are methods of image enhancement. The evaluation uses diverse test data set to evaluate different environmental conditions. Results of the evaluation show an increased number of successful marker detections in videos pre-processed by dehazing algorithms and evaluate the performance of each compared method. The Screened Poisson method performs slightly better to other methods across various tested environments, while Bright Channel Prior and Automatic Color Enhancement shows similarly positive results.
Název v anglickém jazyce
Impact of Dehazing on Underwater Marker Detection for Augmented Reality
Popis výsledku anglicky
Underwater augmented reality is a very challenging task and amongst several issues, one of the most crucial aspects involves real-time tracking. Particles present in water combined with the uneven absorption of light decrease the visibility in the underwater environment. Dehazing methods are used in many areas to improve the quality of digital image data that is degraded by the influence of the environment. This paper describes the visibility conditions affecting underwater scenes and shows existing dehazing techniques that successfully improve the quality of underwater images. Four underwater dehazing methods are selected for evaluation of their capability of improving the success of square marker detection in underwater videos. Two reviewed methods represent approaches of image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are methods of image enhancement. The evaluation uses diverse test data set to evaluate different environmental conditions. Results of the evaluation show an increased number of successful marker detections in videos pre-processed by dehazing algorithms and evaluate the performance of each compared method. The Screened Poisson method performs slightly better to other methods across various tested environments, while Bright Channel Prior and Automatic Color Enhancement shows similarly positive results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Robotics and AI
ISSN
2296-9144
e-ISSN
2296-9144
Svazek periodika
5
Číslo periodika v rámci svazku
92
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000441708500001
EID výsledku v databázi Scopus
2-s2.0-85061399836