Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Single image dehazing using a new color channel

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017706" target="_blank" >RIV/62690094:18450/21:50017706 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1047320320302212?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1047320320302212?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jvcir.2020.103008" target="_blank" >10.1016/j.jvcir.2020.103008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Single image dehazing using a new color channel

  • Popis výsledku v původním jazyce

    Images with hazy scene suffer from low-contrast, which reduces the visible quality of the scene, thus making object detection a more challenging task. Low-contrast can result from foggy weather conditions during image acquisition. Dehazing is a process of removal of haze from the photography of a hazy scene. Single-image dehazing based on dark channel priors are well-known techniques in this field. However, the performance of such techniques is limited to priors or constraints. Moreover, this type of method fails when images have sky-region. So, a method is proposed, which can restore the visibility of hazy images. First, a hazy image is divided into blocks of size 32 × 32, then the score of each block is calculated to select a block having the highest score. Atmospheric light is calculated from the selected block. A new color channel is considered to remove atmospheric scattering, obtained channel value and atmospheric light are then used to calculate the transmission map in the second step. Third, radiance is computed using a transmission map and atmospheric light. The illumination scaling factor is adopted to enhance the quality of a dehazed image in the final step. Experiments are performed on six datasets namely, I-HAZE, O-HAZE, BSDS500, FRIDA, RESIDE dataset and natural images from Google. The proposed method is compared against 11 state-of-the-art methods. The performance is analyzed using fourteen quantitative evaluation metrics. All the results demonstrate that the proposed method outperforms 11 state-of-the-art methods in most of the cases. © 2020 Elsevier Inc.

  • Název v anglickém jazyce

    Single image dehazing using a new color channel

  • Popis výsledku anglicky

    Images with hazy scene suffer from low-contrast, which reduces the visible quality of the scene, thus making object detection a more challenging task. Low-contrast can result from foggy weather conditions during image acquisition. Dehazing is a process of removal of haze from the photography of a hazy scene. Single-image dehazing based on dark channel priors are well-known techniques in this field. However, the performance of such techniques is limited to priors or constraints. Moreover, this type of method fails when images have sky-region. So, a method is proposed, which can restore the visibility of hazy images. First, a hazy image is divided into blocks of size 32 × 32, then the score of each block is calculated to select a block having the highest score. Atmospheric light is calculated from the selected block. A new color channel is considered to remove atmospheric scattering, obtained channel value and atmospheric light are then used to calculate the transmission map in the second step. Third, radiance is computed using a transmission map and atmospheric light. The illumination scaling factor is adopted to enhance the quality of a dehazed image in the final step. Experiments are performed on six datasets namely, I-HAZE, O-HAZE, BSDS500, FRIDA, RESIDE dataset and natural images from Google. The proposed method is compared against 11 state-of-the-art methods. The performance is analyzed using fourteen quantitative evaluation metrics. All the results demonstrate that the proposed method outperforms 11 state-of-the-art methods in most of the cases. © 2020 Elsevier Inc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Visual Communication and Image Representation

  • ISSN

    1047-3203

  • e-ISSN

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    JANUARY

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    "Article number 103008"

  • Kód UT WoS článku

    000620295500004

  • EID výsledku v databázi Scopus

    2-s2.0-85099214977