Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trends and Prospects of Techniques for Haze Removal From Degraded Images: A Survey

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019187" target="_blank" >RIV/62690094:18450/22:50019187 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9779097" target="_blank" >https://ieeexplore.ieee.org/document/9779097</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TETCI.2022.3173443" target="_blank" >10.1109/TETCI.2022.3173443</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trends and Prospects of Techniques for Haze Removal From Degraded Images: A Survey

  • Popis výsledku v původním jazyce

    For the last two decades, image processing techniques have been used frequently in computer vision applications. The most challenging task in image processing is restoring images that are degraded due to various weather conditions. Mainly, the visibility of outdoor images is corrupted due to adverse atmospheric effects. The visibility of acquired images is reduced in these circumstances. Haze is an atmospheric phenomenon that reduces the clarity of an image. Due to the presence of particles such as dust, dirt, soot, or smoke, there is significant decay in the color and contrast of captured images. Haze present in acquired images causes issues in a variety of computer vision applications. Therefore, enhancing the contrast of a hazy image and restoring the visibility of the scene is essential. Since clear images are required in every application, image dehazing is an important step. Hence, many researchers are working on it. Different methods have been presented in the literature for image dehazing. This study describes various traditional and deep learning techniques of image dehazing from an analytical perspective. The main intention behind this work is to provide an intuitive understanding of the major techniques that have made a relevant contribution to haze removal. In this paper, we have covered different types of contributions toward dehazing based on the traditional method as well as deep learning approaches. With a considerable amount of instinctive simplifications, the reader is expected to have an improved ability to visualize the internal dynamics of these processes. IEEE

  • Název v anglickém jazyce

    Trends and Prospects of Techniques for Haze Removal From Degraded Images: A Survey

  • Popis výsledku anglicky

    For the last two decades, image processing techniques have been used frequently in computer vision applications. The most challenging task in image processing is restoring images that are degraded due to various weather conditions. Mainly, the visibility of outdoor images is corrupted due to adverse atmospheric effects. The visibility of acquired images is reduced in these circumstances. Haze is an atmospheric phenomenon that reduces the clarity of an image. Due to the presence of particles such as dust, dirt, soot, or smoke, there is significant decay in the color and contrast of captured images. Haze present in acquired images causes issues in a variety of computer vision applications. Therefore, enhancing the contrast of a hazy image and restoring the visibility of the scene is essential. Since clear images are required in every application, image dehazing is an important step. Hence, many researchers are working on it. Different methods have been presented in the literature for image dehazing. This study describes various traditional and deep learning techniques of image dehazing from an analytical perspective. The main intention behind this work is to provide an intuitive understanding of the major techniques that have made a relevant contribution to haze removal. In this paper, we have covered different types of contributions toward dehazing based on the traditional method as well as deep learning approaches. With a considerable amount of instinctive simplifications, the reader is expected to have an improved ability to visualize the internal dynamics of these processes. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Emerging Topics in Computational Intelligence

  • ISSN

    2471-285X

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    762-782

  • Kód UT WoS článku

    000799567800001

  • EID výsledku v databázi Scopus

    2-s2.0-85130505606