Single Image Dehazing via Fusion of Multilevel Attention Network for Vision-Based Measurement Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020437" target="_blank" >RIV/62690094:18450/23:50020437 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10115496" target="_blank" >https://ieeexplore.ieee.org/document/10115496</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIM.2023.3271753" target="_blank" >10.1109/TIM.2023.3271753</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single Image Dehazing via Fusion of Multilevel Attention Network for Vision-Based Measurement Applications
Popis výsledku v původním jazyce
Nowadays, researchers use vision-based measurement tools to record, detect, and monitor an atmospheric phenomenon called haze. It impedes the proper functioning of many outdoor industrial systems, such as autonomous driving, surveillance, satellite imagery, etc. Conventional visibility restoration methods cannot accurately recover image quality due to inaccurate estimations of haze thickness and the presence of color-cast effects. Deep neural networks are evolving due to their ability to directly dehaze images from hazy scenes. Therefore, a unique attention-based end-to-end dehazing network named Oval-Net has been proposed in this study to restore clear images from its counterpart without employing the atmospheric scattering model. The Oval-Net is an encoder-decoder architecture that uses spatial and channel attention at each stage to focus on dominant and significant information while avoiding the transmission of irrelevant information from the encoder to the decoder, allowing quicker convergence. The proposed approach outperforms seven state-of-the-art algorithms in quantitative and qualitative assessments of a variety of synthetic and real-world hazy images, proving its effectiveness for vision-based industrial systems. IEEE
Název v anglickém jazyce
Single Image Dehazing via Fusion of Multilevel Attention Network for Vision-Based Measurement Applications
Popis výsledku anglicky
Nowadays, researchers use vision-based measurement tools to record, detect, and monitor an atmospheric phenomenon called haze. It impedes the proper functioning of many outdoor industrial systems, such as autonomous driving, surveillance, satellite imagery, etc. Conventional visibility restoration methods cannot accurately recover image quality due to inaccurate estimations of haze thickness and the presence of color-cast effects. Deep neural networks are evolving due to their ability to directly dehaze images from hazy scenes. Therefore, a unique attention-based end-to-end dehazing network named Oval-Net has been proposed in this study to restore clear images from its counterpart without employing the atmospheric scattering model. The Oval-Net is an encoder-decoder architecture that uses spatial and channel attention at each stage to focus on dominant and significant information while avoiding the transmission of irrelevant information from the encoder to the decoder, allowing quicker convergence. The proposed approach outperforms seven state-of-the-art algorithms in quantitative and qualitative assessments of a variety of synthetic and real-world hazy images, proving its effectiveness for vision-based industrial systems. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Instrumentation and Measurement
ISSN
0018-9456
e-ISSN
1557-9662
Svazek periodika
72
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
"Article number: 4503415"
Kód UT WoS článku
000991806800045
EID výsledku v databázi Scopus
2-s2.0-85159803427