Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The complexity landscape of decompositional parameters for ILP

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106822" target="_blank" >RIV/00216224:14330/18:00106822 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.artint.2017.12.006" target="_blank" >http://dx.doi.org/10.1016/j.artint.2017.12.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artint.2017.12.006" target="_blank" >10.1016/j.artint.2017.12.006</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The complexity landscape of decompositional parameters for ILP

  • Popis výsledku v původním jazyce

    Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we give an overview of the complexity of ILP w.r.t. decompositional parameters defined on the constraint matrix.

  • Název v anglickém jazyce

    The complexity landscape of decompositional parameters for ILP

  • Popis výsledku anglicky

    Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we give an overview of the complexity of ILP w.r.t. decompositional parameters defined on the constraint matrix.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ARTIFICIAL INTELLIGENCE

  • ISSN

    0004-3702

  • e-ISSN

  • Svazek periodika

    257

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    61-71

  • Kód UT WoS článku

    000427335000003

  • EID výsledku v databázi Scopus

    2-s2.0-85043375699