Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421994" target="_blank" >RIV/00216208:11320/20:10421994 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >10.4230/LIPIcs.ICALP.2020.26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming
Popis výsledku v původním jazyce
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with tree-depth d and largest entry Δ are solvable in time g(d,Δ) poly(n) for some function g, i.e., fixed parameter tractable when parameterized by tree-depth d and Δ. However, the tree-depth of a constraint matrix depends on the positions of its non-zero entries and thus does not reflect its geometric structure. In particular, tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth. We prove that the branch-depth of the matroid defined by the columns of the constraint matrix is equal to the minimum tree-depth of a row-equivalent matrix. We also design a fixed parameter algorithm parameterized by an integer d and the entry complexity of an input matrix that either outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming parameterized by the branch-depth of the input constraint matrix and the entry complexity. The parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.
Název v anglickém jazyce
Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming
Popis výsledku anglicky
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with tree-depth d and largest entry Δ are solvable in time g(d,Δ) poly(n) for some function g, i.e., fixed parameter tractable when parameterized by tree-depth d and Δ. However, the tree-depth of a constraint matrix depends on the positions of its non-zero entries and thus does not reflect its geometric structure. In particular, tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth. We prove that the branch-depth of the matroid defined by the columns of the constraint matrix is equal to the minimum tree-depth of a row-equivalent matrix. We also design a fixed parameter algorithm parameterized by an integer d and the entry complexity of an input matrix that either outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming parameterized by the branch-depth of the input constraint matrix and the entry complexity. The parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-138-2
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
19
Strana od-do
1-19
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Saarbrücken
Datum konání akce
8. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—