Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116613" target="_blank" >RIV/00216224:14330/20:00116613 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >10.4230/LIPIcs.ICALP.2020.26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming
Popis výsledku v původním jazyce
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-depth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d*,D)poly(n) where d* is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Název v anglickém jazyce
Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming
Popis výsledku anglicky
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-depth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d*,D)poly(n) where d* is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), p. "26:1"-"26:19", 19 pp. 2020.
ISBN
9783959771382
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
19
Strana od-do
„26:1“-„26:19“
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Dagstuhl, Germany
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—