Matrices of Optimal Tree-Depth and a Row-Invariant Parameterized Algorithm for Integer Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126436" target="_blank" >RIV/00216224:14330/22:00126436 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10455466
Výsledek na webu
<a href="https://epubs.siam.org/doi/10.1137/20M1353502" target="_blank" >https://epubs.siam.org/doi/10.1137/20M1353502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1353502" target="_blank" >10.1137/20M1353502</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrices of Optimal Tree-Depth and a Row-Invariant Parameterized Algorithm for Integer Programming
Popis výsledku v původním jazyce
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry Δ are solvable in time g(d, Δ)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual treedepth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d∗, Δ)poly(n) where d∗ is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Název v anglickém jazyce
Matrices of Optimal Tree-Depth and a Row-Invariant Parameterized Algorithm for Integer Programming
Popis výsledku anglicky
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry Δ are solvable in time g(d, Δ)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual treedepth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d∗, Δ)poly(n) where d∗ is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON COMPUTING
ISSN
0097-5397
e-ISSN
1095-7111
Svazek periodika
51
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
664-700
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85132215614