Searching for Variable-Speed Motions in Long Sequences of Motion Capture Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107162" target="_blank" >RIV/00216224:14330/19:00107162 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.is.2018.04.002" target="_blank" >http://dx.doi.org/10.1016/j.is.2018.04.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.is.2018.04.002" target="_blank" >10.1016/j.is.2018.04.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching for Variable-Speed Motions in Long Sequences of Motion Capture Data
Popis výsledku v původním jazyce
Motion capture data digitally represent human movements by sequences of body configurations in time. Subsequence searching in long sequences of such spatio-temporal data is difficult as query-relevant motions can vary in execution speeds and styles and can occur anywhere in a very long data sequence. To deal with these problems, we employ a fast and effective similarity measure that is elastic. The property of elasticity enables matching of two overlapping but slightly misaligned subsequences with a high confidence. Based on the elasticity, the long data sequence is partitioned into overlapping segments that are organized in multiple levels. The number of levels and sizes of overlaps are optimized to generate a modest number of segments while being able to trace an arbitrary query. In a retrieval phase, a query is always represented as a single segment and fast matched against segments within a relevant level without any costly post-processing. Moreover, visiting adjacent levels makes possible subsequence searching of time-warped (i.e., faster or slower executed) queries. To efficiently search on a large scale, segment features can be binarized and segmentation levels independently indexed. We experimentally demonstrate effectiveness and efficiency of the proposed approach for subsequence searching on a real-life dataset.
Název v anglickém jazyce
Searching for Variable-Speed Motions in Long Sequences of Motion Capture Data
Popis výsledku anglicky
Motion capture data digitally represent human movements by sequences of body configurations in time. Subsequence searching in long sequences of such spatio-temporal data is difficult as query-relevant motions can vary in execution speeds and styles and can occur anywhere in a very long data sequence. To deal with these problems, we employ a fast and effective similarity measure that is elastic. The property of elasticity enables matching of two overlapping but slightly misaligned subsequences with a high confidence. Based on the elasticity, the long data sequence is partitioned into overlapping segments that are organized in multiple levels. The number of levels and sizes of overlaps are optimized to generate a modest number of segments while being able to trace an arbitrary query. In a retrieval phase, a query is always represented as a single segment and fast matched against segments within a relevant level without any costly post-processing. Moreover, visiting adjacent levels makes possible subsequence searching of time-warped (i.e., faster or slower executed) queries. To efficiently search on a large scale, segment features can be binarized and segmentation levels independently indexed. We experimentally demonstrate effectiveness and efficiency of the proposed approach for subsequence searching on a real-life dataset.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-18889S" target="_blank" >GA16-18889S: Analytika pro velká nestrukturovaná data</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Systems
ISSN
0306-4379
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
148-158
Kód UT WoS článku
000454964800012
EID výsledku v databázi Scopus
2-s2.0-85045710372