Benchmarking Search and Annotation in Continuous Human Skeleton Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107371" target="_blank" >RIV/00216224:14330/19:00107371 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3323873.3325013" target="_blank" >http://dx.doi.org/10.1145/3323873.3325013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3323873.3325013" target="_blank" >10.1145/3323873.3325013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking Search and Annotation in Continuous Human Skeleton Sequences
Popis výsledku v původním jazyce
Motion capture data are digital representations of human movements in form of 3D trajectories of multiple body joints. To understand the captured motions, similarity-based processing and deep learning have already proved to be effective, especially in classifying pre-segmented actions. However, in real-world scenarios motion data are typically captured as long continuous sequences, without explicit knowledge of semantic partitioning. To make such unsegmented data accessible and reusable as required by many applications, there is a strong requirement to analyze, search, annotate and mine them automatically. However, there is currently an absence of datasets and benchmarks to test and compare the capabilities of the developed techniques for continuous motion data processing. In this paper, we introduce a new large-scale LSMB19 dataset consisting of two 3D skeleton sequences of a total length of 54.5 hours. We also define a benchmark on two important multimedia retrieval operations: subsequence search and annotation. Additionally, we exemplify the usability of the benchmark by establishing baseline results for these operations.
Název v anglickém jazyce
Benchmarking Search and Annotation in Continuous Human Skeleton Sequences
Popis výsledku anglicky
Motion capture data are digital representations of human movements in form of 3D trajectories of multiple body joints. To understand the captured motions, similarity-based processing and deep learning have already proved to be effective, especially in classifying pre-segmented actions. However, in real-world scenarios motion data are typically captured as long continuous sequences, without explicit knowledge of semantic partitioning. To make such unsegmented data accessible and reusable as required by many applications, there is a strong requirement to analyze, search, annotate and mine them automatically. However, there is currently an absence of datasets and benchmarks to test and compare the capabilities of the developed techniques for continuous motion data processing. In this paper, we introduce a new large-scale LSMB19 dataset consisting of two 3D skeleton sequences of a total length of 54.5 hours. We also define a benchmark on two important multimedia retrieval operations: subsequence search and annotation. Additionally, we exemplify the usability of the benchmark by establishing baseline results for these operations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-02033S" target="_blank" >GA19-02033S: Vyhledávání, analytika a anotace datových toků lidských pohybů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Multimedia Retrieval (ICMR)
ISBN
9781450367653
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
38-42
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Ottawa, Canada
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000482188900008