Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107545" target="_blank" >RIV/00216224:14330/19:00107545 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/19:PU134941
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TVLSI.2019.2923848" target="_blank" >http://dx.doi.org/10.1109/TVLSI.2019.2923848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVLSI.2019.2923848" target="_blank" >10.1109/TVLSI.2019.2923848</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques.
Popis výsledku v původním jazyce
Randomness testing is an important procedure that bit streams, produced by critical cryptographic primitives such as encryption functions and hash functions, have to undergo. In this paper, a new hardware platform for the randomness testing is proposed. The platform exploits the principles of genetic programming, which is a machine learning technique developed for the automated program and circuit design. The platform is capable of evolving efficient randomness distinguishers directly on a chip. Each distinguisher is represented as a Boolean polynomial in the algebraic normal form. The randomness testing is conducted for bit streams that are either stored in an on-chip memory or generated by a circuit placed on the chip. The platform is developed with a Xilinx Zynq-7000 All Programmable System on Chip that integrates a field programmable gate array with on-chip ARM processors. The platform is evaluated in terms of the quality of randomness testing, performance, and resources utilization. With power budget less than 3 W, the platform provides comparable randomness testing capabilities with the standard testing batteries running on a personal computer.
Název v anglickém jazyce
Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques.
Popis výsledku anglicky
Randomness testing is an important procedure that bit streams, produced by critical cryptographic primitives such as encryption functions and hash functions, have to undergo. In this paper, a new hardware platform for the randomness testing is proposed. The platform exploits the principles of genetic programming, which is a machine learning technique developed for the automated program and circuit design. The platform is capable of evolving efficient randomness distinguishers directly on a chip. Each distinguisher is represented as a Boolean polynomial in the algebraic normal form. The randomness testing is conducted for bit streams that are either stored in an on-chip memory or generated by a circuit placed on the chip. The platform is developed with a Xilinx Zynq-7000 All Programmable System on Chip that integrates a field programmable gate array with on-chip ARM processors. The platform is evaluated in terms of the quality of randomness testing, performance, and resources utilization. With power budget less than 3 W, the platform provides comparable randomness testing capabilities with the standard testing batteries running on a personal computer.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-08565S" target="_blank" >GA16-08565S: Rozvoj kryptoanalytických metod prostřednictvím evolučních výpočtů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
ISSN
1063-8210
e-ISSN
1557-9999
Svazek periodika
27
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
2734-2744
Kód UT WoS článku
000508360300004
EID výsledku v databázi Scopus
2-s2.0-85069509602