Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107638" target="_blank" >RIV/00216224:14330/19:00107638 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1038/s41598-019-49431-3" target="_blank" >http://dx.doi.org/10.1038/s41598-019-49431-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-019-49431-3" target="_blank" >10.1038/s41598-019-49431-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
Popis výsledku v původním jazyce
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30–200 nm) that function as conveyors of information between cells, refecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantifcation of sEVs an extremely difcult task. We present a completely deep-learningbased pipeline for the segmentation of seVs in teM images. our method applies a residual convolutional neural network to obtain fne masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two diferent state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.
Název v anglickém jazyce
Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
Popis výsledku anglicky
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30–200 nm) that function as conveyors of information between cells, refecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantifcation of sEVs an extremely difcult task. We present a completely deep-learningbased pipeline for the segmentation of seVs in teM images. our method applies a residual convolutional neural network to obtain fne masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two diferent state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
„13211“
Kód UT WoS článku
000485680900008
EID výsledku v databázi Scopus
2-s2.0-85072191409