Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107638" target="_blank" >RIV/00216224:14330/19:00107638 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1038/s41598-019-49431-3" target="_blank" >http://dx.doi.org/10.1038/s41598-019-49431-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-019-49431-3" target="_blank" >10.1038/s41598-019-49431-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images

  • Popis výsledku v původním jazyce

    Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30–200 nm) that function as conveyors of information between cells, refecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantifcation of sEVs an extremely difcult task. We present a completely deep-learningbased pipeline for the segmentation of seVs in teM images. our method applies a residual convolutional neural network to obtain fne masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two diferent state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.

  • Název v anglickém jazyce

    Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images

  • Popis výsledku anglicky

    Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30–200 nm) that function as conveyors of information between cells, refecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantifcation of sEVs an extremely difcult task. We present a completely deep-learningbased pipeline for the segmentation of seVs in teM images. our method applies a residual convolutional neural network to obtain fne masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two diferent state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    „13211“

  • Kód UT WoS článku

    000485680900008

  • EID výsledku v databázi Scopus

    2-s2.0-85072191409