Parameter space abstraction and unfolding semantics of discrete regulatory networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00108116" target="_blank" >RIV/00216224:14330/19:00108116 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2018.03.009" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2018.03.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2018.03.009" target="_blank" >10.1016/j.tcs.2018.03.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameter space abstraction and unfolding semantics of discrete regulatory networks
Popis výsledku v původním jazyce
The modelling of discrete regulatory networks combines a graph specifying the pairwise influences between the variables of the system, and a parametrisation from which can be derived a discrete transition system. Given the influence graph only, the exploration of admissible parametrisations and the behaviours they enable is computationally demanding due to the combinatorial explosions of both parametrisation and reachable state space. This article introduces an abstraction of the parametrisation space and its refinement to account for the existence of given transitions, and for constraints on the sign and observability of influences. The abstraction uses a convex sublattice containing the concrete parametrisation space specified by its infimum and supremum parametrisations. It is shown that the computed abstractions are optimal, i.e., no smaller convex sublattice exists. Although the abstraction may introduce over-approximation, it has been proven to be conservative with respect to reachability of states. Then, an unfolding semantics for Parametric Regulatory Networks is defined, taking advantage of concurrency between transitions to provide a compact representation of reachable transitions. A prototype implementation is provided: it has been applied to several examples of Boolean and multi-valued networks, showing its tractability for networks with numerous components.
Název v anglickém jazyce
Parameter space abstraction and unfolding semantics of discrete regulatory networks
Popis výsledku anglicky
The modelling of discrete regulatory networks combines a graph specifying the pairwise influences between the variables of the system, and a parametrisation from which can be derived a discrete transition system. Given the influence graph only, the exploration of admissible parametrisations and the behaviours they enable is computationally demanding due to the combinatorial explosions of both parametrisation and reachable state space. This article introduces an abstraction of the parametrisation space and its refinement to account for the existence of given transitions, and for constraints on the sign and observability of influences. The abstraction uses a convex sublattice containing the concrete parametrisation space specified by its infimum and supremum parametrisations. It is shown that the computed abstractions are optimal, i.e., no smaller convex sublattice exists. Although the abstraction may introduce over-approximation, it has been proven to be conservative with respect to reachability of states. Then, an unfolding semantics for Parametric Regulatory Networks is defined, taking advantage of concurrency between transitions to provide a compact representation of reachable transitions. A prototype implementation is provided: it has been applied to several examples of Boolean and multi-valued networks, showing its tractability for networks with numerous components.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-11089S" target="_blank" >GA15-11089S: Získávání parametrů biologických modelů pomocí techniky ověřování modelů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
765
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
120-144
Kód UT WoS článku
000473372600007
EID výsledku v databázi Scopus
2-s2.0-85049004467