(Do not) trust in ecosystems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110162" target="_blank" >RIV/00216224:14330/19:00110162 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICSE-NIER.2019.00011" target="_blank" >http://dx.doi.org/10.1109/ICSE-NIER.2019.00011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICSE-NIER.2019.00011" target="_blank" >10.1109/ICSE-NIER.2019.00011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
(Do not) trust in ecosystems
Popis výsledku v původním jazyce
In the context of Smart Ecosystems, systems engage in dynamic cooperation with other systems to achieve their goals. Expedient operation is only possible when all systems cooperate as expected. This requires a level of trust between the components of the ecosystem. New systems that join the ecosystem therefore first need to build up a level of trust. Humans derive trust from behavioral reputation in key situations. In Smart Ecosystems (SES), the reputation of a system or system component can also be based on observation of its behavior. In this paper, we introduce a method and a test platform that support virtual evaluation of decisions at runtime, thereby supporting trust building within SES. The key idea behind the platform is that it employs and evaluates Digital Twins, which are executable models of system components, to learn about component behavior in observed situations. The trust in the Digital Twin then builds up over time based on the behavioral compliance of the real system component with its Digital Twin. In this paper, we use the context of automotive ecosystems and examine the concepts for building up reputation on control algorithms of smart agents dynamically downloaded at runtime to individual autonomous vehicles within the ecosystem.
Název v anglickém jazyce
(Do not) trust in ecosystems
Popis výsledku anglicky
In the context of Smart Ecosystems, systems engage in dynamic cooperation with other systems to achieve their goals. Expedient operation is only possible when all systems cooperate as expected. This requires a level of trust between the components of the ecosystem. New systems that join the ecosystem therefore first need to build up a level of trust. Humans derive trust from behavioral reputation in key situations. In Smart Ecosystems (SES), the reputation of a system or system component can also be based on observation of its behavior. In this paper, we introduce a method and a test platform that support virtual evaluation of decisions at runtime, thereby supporting trust building within SES. The key idea behind the platform is that it employs and evaluates Digital Twins, which are executable models of system components, to learn about component behavior in observed situations. The trust in the Digital Twin then builds up over time based on the behavioral compliance of the real system component with its Digital Twin. In this paper, we use the context of automotive ecosystems and examine the concepts for building up reputation on control algorithms of smart agents dynamically downloaded at runtime to individual autonomous vehicles within the ecosystem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 41st International Conference on Software Engineering: New Ideas and Emerging Results
ISBN
9781728117584
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
9-12
Název nakladatele
IEEE Press
Místo vydání
USA
Místo konání akce
Montreal, Canada
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000557879900003