Exploiting Open IE for Deriving Multiple Premises Entailment Corpus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110584" target="_blank" >RIV/00216224:14330/19:00110584 - isvavai.cz</a>
Výsledek na webu
<a href="http://lml.bas.bg/ranlp2019/proceedings-ranlp-2019.pdf" target="_blank" >http://lml.bas.bg/ranlp2019/proceedings-ranlp-2019.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26615/978-954-452-056-4_144" target="_blank" >10.26615/978-954-452-056-4_144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting Open IE for Deriving Multiple Premises Entailment Corpus
Popis výsledku v původním jazyce
Natural language inference (NLI) is a key part of natural language understanding. The NLI task is defined as a decision problem whether a given sentence -- hypothesis -- can be inferred from a given text. Typically, we deal with a text consisting of just a single premise/single sentence, which is called a single premise entailment (SPE) task. Recently, a derived task of NLI from multiple premises (MPE) was introduced together with the first annotated corpus and corresponding several strong baselines. Nevertheless, the further development in MPE field requires accessibility of huge amounts of annotated data. In this paper we introduce a novel method for rapid deriving of MPE corpora from an existing NLI (SPE) annotated data that does not require any additional annotation work. This proposed approach is based on using an open information extraction system. We demonstrate the application of the method on a well known SNLI corpus. Over the obtained corpus, we provide the first evaluations as well as we state a strong baseline.
Název v anglickém jazyce
Exploiting Open IE for Deriving Multiple Premises Entailment Corpus
Popis výsledku anglicky
Natural language inference (NLI) is a key part of natural language understanding. The NLI task is defined as a decision problem whether a given sentence -- hypothesis -- can be inferred from a given text. Typically, we deal with a text consisting of just a single premise/single sentence, which is called a single premise entailment (SPE) task. Recently, a derived task of NLI from multiple premises (MPE) was introduced together with the first annotated corpus and corresponding several strong baselines. Nevertheless, the further development in MPE field requires accessibility of huge amounts of annotated data. In this paper we introduce a novel method for rapid deriving of MPE corpora from an existing NLI (SPE) annotated data that does not require any additional annotation work. This proposed approach is based on using an open information extraction system. We demonstrate the application of the method on a well known SNLI corpus. Over the obtained corpus, we provide the first evaluations as well as we state a strong baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Recent Advances in Natural Language Processing
ISBN
9789544520557
ISSN
2603-2813
e-ISSN
1313-8502
Počet stran výsledku
8
Strana od-do
1257-1264
Název nakladatele
2019
Místo vydání
Varna
Místo konání akce
Varna
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—