Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A genetic algorithm for discriminative graph pattern mining

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110952" target="_blank" >RIV/00216224:14330/19:00110952 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/3331076.3331113" target="_blank" >http://dx.doi.org/10.1145/3331076.3331113</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3331076.3331113" target="_blank" >10.1145/3331076.3331113</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A genetic algorithm for discriminative graph pattern mining

  • Popis výsledku v původním jazyce

    Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or at- tribute changes. We propose a new algorithm for mining discriminative patterns of events in such dynamic graphs. This is dierent from other approaches, which typically discriminate whole static graphs while we focus on subgraphs that represent local events. Three tools have been employed The algorithm uses random walks and a nested genetic algo- rithm to nd the patterns through inexact matching. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on real-world graph data like DBLP and Enron. We show that the method outperforms baseline algorithm for all data sets and that the increase of accuracy is quite high, between 2.5for NIPS vs. KDD from DBLP dataset and 30% for Enron dataset. We also discus possible extensions of the algorithm.

  • Název v anglickém jazyce

    A genetic algorithm for discriminative graph pattern mining

  • Popis výsledku anglicky

    Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or at- tribute changes. We propose a new algorithm for mining discriminative patterns of events in such dynamic graphs. This is dierent from other approaches, which typically discriminate whole static graphs while we focus on subgraphs that represent local events. Three tools have been employed The algorithm uses random walks and a nested genetic algo- rithm to nd the patterns through inexact matching. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on real-world graph data like DBLP and Enron. We show that the method outperforms baseline algorithm for all data sets and that the increase of accuracy is quite high, between 2.5for NIPS vs. KDD from DBLP dataset and 30% for Enron dataset. We also discus possible extensions of the algorithm.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 23rd International Database Applications & Engineering Symposium, IDEAS 2019, Athens, Greece

  • ISBN

    9781450362498

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    2

  • Strana od-do

    461-462

  • Název nakladatele

    ACM

  • Místo vydání

    New York

  • Místo konání akce

    Athens

  • Datum konání akce

    1. 1. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku