A genetic algorithm for discriminative graph pattern mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110952" target="_blank" >RIV/00216224:14330/19:00110952 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3331076.3331113" target="_blank" >http://dx.doi.org/10.1145/3331076.3331113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3331076.3331113" target="_blank" >10.1145/3331076.3331113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A genetic algorithm for discriminative graph pattern mining
Popis výsledku v původním jazyce
Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or at- tribute changes. We propose a new algorithm for mining discriminative patterns of events in such dynamic graphs. This is dierent from other approaches, which typically discriminate whole static graphs while we focus on subgraphs that represent local events. Three tools have been employed The algorithm uses random walks and a nested genetic algo- rithm to nd the patterns through inexact matching. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on real-world graph data like DBLP and Enron. We show that the method outperforms baseline algorithm for all data sets and that the increase of accuracy is quite high, between 2.5for NIPS vs. KDD from DBLP dataset and 30% for Enron dataset. We also discus possible extensions of the algorithm.
Název v anglickém jazyce
A genetic algorithm for discriminative graph pattern mining
Popis výsledku anglicky
Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or at- tribute changes. We propose a new algorithm for mining discriminative patterns of events in such dynamic graphs. This is dierent from other approaches, which typically discriminate whole static graphs while we focus on subgraphs that represent local events. Three tools have been employed The algorithm uses random walks and a nested genetic algo- rithm to nd the patterns through inexact matching. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on real-world graph data like DBLP and Enron. We show that the method outperforms baseline algorithm for all data sets and that the increase of accuracy is quite high, between 2.5for NIPS vs. KDD from DBLP dataset and 30% for Enron dataset. We also discus possible extensions of the algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23rd International Database Applications & Engineering Symposium, IDEAS 2019, Athens, Greece
ISBN
9781450362498
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
461-462
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Athens
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—