Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MORE NON-BIPARTITE FORCING PAIRS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113680" target="_blank" >RIV/00216224:14330/19:00113680 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1279" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1279</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MORE NON-BIPARTITE FORCING PAIRS

  • Popis výsledku v původním jazyce

    We study pairs of graphs (H-1, H-2) such that every graph with the densities of H-1 and H-2 close to the densities of H-1 and H-2 in a random graph is quasirandom; such pairs (H-1, H-2) are called forcing. Non-bipartite forcing pairs were first discovered by Conlon, Han, Person and Schacht [Weak quasi-randomness for uniform hypergraphs, Random Structures Algorithms 40 (2012), no. 1, 1-38]: they showed that (K-t, F) is forcing where F is the graph that arises from K-t by iteratively doubling its vertices and edges in a prescribed way t times. Reiher and Schacht [Forcing quasirandomness with triangles, Forum of Mathematics, Sigma. Vol. 7, 2019] strengthened this result for t = 3 by proving that two doublings suffice and asked for the minimum number of doublings needed for t &gt; 3. We show that [t + 1)/2] doublings always suffice.

  • Název v anglickém jazyce

    MORE NON-BIPARTITE FORCING PAIRS

  • Popis výsledku anglicky

    We study pairs of graphs (H-1, H-2) such that every graph with the densities of H-1 and H-2 close to the densities of H-1 and H-2 in a random graph is quasirandom; such pairs (H-1, H-2) are called forcing. Non-bipartite forcing pairs were first discovered by Conlon, Han, Person and Schacht [Weak quasi-randomness for uniform hypergraphs, Random Structures Algorithms 40 (2012), no. 1, 1-38]: they showed that (K-t, F) is forcing where F is the graph that arises from K-t by iteratively doubling its vertices and edges in a prescribed way t times. Reiher and Schacht [Forcing quasirandomness with triangles, Forum of Mathematics, Sigma. Vol. 7, 2019] strengthened this result for t = 3 by proving that two doublings suffice and asked for the minimum number of doublings needed for t &gt; 3. We show that [t + 1)/2] doublings always suffice.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0231-6986

  • e-ISSN

    0862-9544

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    7

  • Strana od-do

    819-825

  • Kód UT WoS článku

    000484349000072

  • EID výsledku v databázi Scopus

    2-s2.0-85073799808